AD=~A106 398

UNCLASSIFIED

NORTHEASTERN UNIV BOSTON MASS ELECTRONICS RESEARCH LAB F/6 9/2

A PROGRAMMABLE CONTROL UNIT FOR A BALLOON=BORNE MASS SPECTRMT-ETC(U)
SEP 79 V C GEROUSIS F1 %ZS-TM-O
SCIENTIFIC-1 AFGL=TR=79=-0225

»

P | 1 | g

A PROGRAMMABLE CONTROL UNIT FOR A
BALLOON-BORNE MASS SPECTROMETER

BASED ON INTEL BO85A MICROPROCESSOR

Vaassilios C. Gerousis

Northeastern University
Electronics Research Laboratory
Boston, Massachusetts 02115

SCIENTIFIC REPORT NO. 1

7 September 1979

Approved for public release; distribution unlimited

Prepared for

Air Force Geophysics Laboratory
Air Force Systems Command
United States Air Force

4
v é

% Hanscom AFB, Magsachusetts 01731
. o

-’

N

Qualified requestors may obtain additional copies

from the Dafense

Documentation Center. All others should apply to the National

Technical Information Service.

A’CCUR"‘V CLASIPICATION QF Yui§ PAGE 'Phent ['aie Entored)

Unclassified

EPORT DOCUMENTATION PAGE PR oL B g bony

2. GOVY A CESHION NOJ 3. ll_g_ul{a'r'ﬁ CATALOO NuUNBLA

rA Programmable Control Unit for a)L
-| Balloon-Borne Mass Spectrometer based on Scientific AupwSEES.—1
Intel 8085A Microprocesso 9 - j ‘ -
7. Auhlo;[u; . .~ [T} -
R O S SV e /
Y b -78-C- !
- - ! Vassilios C. Gerousis | /= 4Ti3628:78-C-0218

9. PERFORMING ORGANIZATION NAME AND AJDRESS . PROGAAM ELEVMENT. PROJECT, TASK
ARKA & WORK UNIT NUMBERY

Monitor/ Alan D. Bailey/LKD

4. MONITORING AGENCY NANE & ADDRESS(1! driferent from Convecli ng Othes) -~

Unclassified

Northeastern University | F : ,,“ﬂj
Electronics Research L.aborator s i % PO AR
oston, MA 02115 Y L 231063AM /f//%;~

tt. COMNTROLLING OFFICE NAME AND ADDRESS -) AEPORE-OETY i

Alr Force Geophysics Laboratory 7/ 7 Septaxber fi !
Hanscom AFB, Massachusetts 01731 N - S i

$e. DECLASSIFICATION OOWNGNA
scHEouLt OOuNARADING

18. DISTHIBUTION STATEMENT (of thiv Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the sbstract entered in Black 20, H dillerent lrom Repart)

18. SUPILEMENTARY NOTES

19. KE°° 42RDS (Continue on reverae side il necessery md identity -./ b.0ck numbder)

Microprocessor Control
8085-Microprocessor)
Programmable Control

2§. ABSTRACT 7C on eide if y and {de ty by dluck

A programmable control unit (PCU) for a balloon-borne quadrupole
mass spectrometer is described. The PCU controls the input

from the electron multiplier. An overview of the principles
underlying quadrupole mass spectrometer systems is briefly dis-

parameters to the guadrupole mass filter, and the data acquisitioyq

‘L” eyt

cussed. Design of the PCU is based on Intel's high-performance .
DD ,53%% 1473 eoimon or tuovesisassocee Unclassified

SECURITY CLASSIFICATION OF ThiS PAGE (When Dara Entered)

MIL-STD-847A
31 January 1973

Unclassified) . : i

. SECUMITY CLASSIFICA™ION OF THIS PAGE When Date Kniered) i
. b 8-bit microprocessor, the 8085A and its support chips. Both

hardware and software designs with the theory of operation are

discussed.;:;\\\\

The system“was designed and developed at Northeastern University v
under Air Force Contracts F19628-76-C-0256 and F19628~76~C-0218,

S NP

Unclassified

SECUMITY CLASSIFICATION OF THIS PAGEWNen Dote Entered)

ACKNOWLEULGEMENTS

I thank my thesis advisor, Professor J. Spencer Rochefort for his
advice and guidance and in making this work possible. I thank Alan D.
Bailey of AFGL for his initial suggestions of the system, and
Raimundas Sukys of Northeastern University for his advice and help with

the hardware portion of the thesis.

Ree
“?istribntlonlr) 1
Availability Codes
Avail and/or
Dict, | Special
[{

i1

TABLE OF CONTENTS

ACKNOWLEDGMENT .
TABLE OF CONTENTS
CHAPTER T ~ BASIC SYSTEM OPERATION + « « ¢ ¢ + ¢ o o o s+ v s o o s »

1.1 Introduction « o « & ¢ ¢ ¢ ¢ ¢ 4 o v e e 4 s e v 4 b e e s

. A * s & . » . . . L4 iii

© e o 8 4 s 4 & s s 4 s s 8 4 s e s v s s e o e s 1v

1.2 Background . . + . + « 4 ¢ s 4 b 4 s e b v e e e s e
1.2.1.
1.2'2.

1.3 Mass Spectrometer Control .+ ¢ ¢« ¢« « ¢ o o 4 s 4 4 s e s

General Description .« « ¢ « « & o o 6 3+ o o 4 s
Principle of Operation of a QMF « « . .

AN NN e

1.4 Mass Spectrometer QUEPUL « ¢ « + ¢ & v o & + o o « s o« s o

CHAPTER 2 — HARDWARE DESIGN « o ¢ & & ¢ o ¢ o o s s v s s« o o o » o
2.1 Functional Description« » « + ¢ ¢ ¢ + « o v o o0 . s
2.1.1,
2.1.2.
2.1.3.

2.2 Circuit Analysig. « « « ¢ ¢ ¢ v ¢ ¢ o e b b e a e e e o0
2.2,1. Central Processor Unit CPU. + « « « « + « + « + &
2.2.1.1.

2.2.1.2.

2.2.1.3.
2,2.1.3.1.

2.2.1.3.2.

o

Intel 8085A Microprocessor « « + » +» s s s s o o

MemOer'--o-.o..-.--.q--o..c

Parallel I/0 Interface and Programmable Timers . .

Initialization « « « & ¢ & v & 4 v « .
The System Clock + « « « « 4 o o+ & « o &

Timing and Control . + « ¢ & + o ¢ + « « &
Bus Timing and Control. . . « « .« .

Interrupts . « + ¢ ¢« o ¢ ¢ v o v o

2.2.1.3.3.
2.2.1.3.4,
2.2.1.3.5.

Status Information,
Serial 1/0 Communication. . . .
DEBUG (Single Step) Circuit .

' 2.3 Address Decoding . . v v v ¢ v ¢ 4 4 b v 4 4 e e e v e e
2.3.1. Memory AdAressing . . « 4 v 4 s 4 b 4 4 s e s s
2.3.2. Memory Mapped I/0 Addressing . + « « &+ « « & « o+ .
2.3.3. Isolated I/0 Addressing . « « « « « « « & &« « & &

2.4 Memory . « o o v 4 o 4 o

iv

2.5

2.6

2.7
2.8

CHAPTER 3 SOFTWARE DESIGN . . . « & « « & & « o « o o &

3.1
3.2
3.3
3.4

3.5
3.6

2.4.1. Read-Only Memory (ROM).

2.4.2. Random Access Memory RAM
2.4.2.1. Intel 2142 RAM
2.4.2,2, BIS5RAM . . v v v v 4 v 4 4

Bus Buffers and Loading Calculation

2.5.1. Static Loadings . . « « . « ¢« « + . .
2.5.1.1. Adress Bus+ . » s
2.5.1.2. Control BusS. « « 4+ + ¢ &« & + &
2.5.1.3. Data Bus . . « « . s + 4 4 . .

2.5.2, Dynamic Loading
2.5.2.1. Capacitive Loading

2.5.2.1.1. Address Bus
2.5.2.1.2. Data BusS. « + « + « .
2.5.2.2. Propagation Delay.
2.5.2.2.1. Read Operation.
2,5.2.2.2, WVrite Operation . . .

I/0Devices « v v+ v o 4 4 4 4 4 e e e e e

2.6.1. I/OPOTES v « v ¢ o ¢ & o o o o o« o

2.6.2 Programmable Interval Timers/Counters.

Data Acquisition Control. ¢« . .+ « . .

RST 6.5 &« & v v v v v 6 v v o o o o o o s o &

Control Operation . . « &+ &+ ¢ ¢« v & ¢ o o « &
Data Acquisition. « « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ 0 o . W
System Overview « + « + ¢« ¢ ¢« & « « &
Memory Organization « . « « « . .« .,
3.4.1. Monitor ¢« ¢ 4 e @ 0 e v e
3.4.2, LAbYary . . v 0 e e s e e e e e
3.4.3. Scratch-pad . . . « ¢« ¢ v + ¢ o v ¢ .
3.4.4. Buffer Memory . . .« ¢« ¢« + « « o ¢ . .
Initialization . . . « . « ¢ ¢« ¢ v o o . .
Task 2 (RST. 7.5 Interrupt) « « « « « & o« o &
3.6.1. Data Fetch. « . + ¢« « . « ¢« .
3.6.2. Control ¢ « v v v 0 . .

26
29
29
29
30
30
32
33
34
36
37
37
39
40
40
42
43
45
48
50
52

53
53
54
55
58
59
59
60
63
65
65
65

r i M

i 3.7 EXITER Subroutine. v o ¢« v s o o ¢ ¢ o o o o » 70
3.7.1. Library Management . . « « « « o o o « « o » o+ 71

: 3.7.2. Control. o o & v 4 v 4 v 4 s et e e e e e e e 71
3.7.3., Task 2 Execution Time. . « . « + « ¢« & &« « « 4+ & 74

3.8 Task 3 (RST. 6.5 INterrupts) . « + + & s o o o+ o o o« » 75

3.8.1. Tramsfer . . . ¢« ¢ ¢ v v 0 0 i e e e n e e e 75

(3.8.2. Comtrol. ¢ v v v i b u e e e e e e e e e e e e 77
3.9 Programming the PCU-85 . , . . v 4 + ¢ ¢« ¢ o &+ &« « & & & 77

3.9.1. Space Management ., « .+ + « &+ s+ ¢ & o &+ ¢ o o o o 78

3.9.2. Parameters Calculations. . . « « « « &+ « « o« + & 78

3.10 Conclusion « v ¢ v v 4 6 v v 0 e e s e e e e s e 80

Appendix A -~ PCU - 85 Software Assembly Listing. 83

AppendiX B & o o 4 6 4 v 0 b e s s a s e e e s e s e e e e e e 99

Part 1 -~ TTY Utility Routines + + « « ¢ o « v « o & 99
Part 2 -~ Console Monitor. . . . + v ¢ &+ v v s v v o o o o » 104

Appendix C - PCU - 85 System Schematic Diagram 127
References .« o ¢« v ¢ v ¢« v 4 6 e v 4 b 4 e s s e e e e e e e 128
Related ContractsS. + « + « o & & o o o o s o o o o s o « v s o « o 129

Personnel. « . v v v 4t b b v v s e v e e e e e e e e e e ey 130

%
!

vi

E CHAPTER 1 - BASIC SYSTEM OPERATION

1.1 Introduction

The PCU-85 system, directed by a software program, controls the mass

scanning operation of the quadrupole mass spectrometer. In the meantime, it
performs sampling and storing of the data output in a buffer memory. At the
end of each time unit, defined as the time required for the buffer memory to

become full, the stored data is directly read from a computer terminal such

as a CRT terminal.
Software routines have been developed to provide for the human interaction
with the system, such as reprogrammability and changeability of parameters.
Figure 1-1 shows a block diagram of the interface between the PCU-85 and

the mass spectrometer.

Ratio . DC
Control D/A ‘Cpntrol Quadru-
pole
Ang§E $# Mass
| D 1ve§ Filter
{ Cormuni- (QMF)
) crr | Chammels | pey_gs | sweep
| Control D/A AC
Contro] Electron
- Multiplier
f
; Status Control o Amplifier
Output
Counter
') Pulses

Figure 1-1. Interface between the PCU-85 and the analog driver
of the Quadrupole Mass Filter,

e

R, 4

1.2 Background

1.2.1 General Description

A balloon-borne ion mass spectrometer is being developed by the Aeronomy
Division of the Air Force Geophysics Laboratory to investigate ambient ion
and neutral clusters at an altitude of 30 to 40 kilometers. Positive and
negative ions in the range of 14 to 1000 atomic mass units (amu) are to
be detected.

The mass spectrometer consists of a quadrupole mass filter (QMF), some
analog circuits to generate the necessary excitation signals for the filter,
and the digital circuits to control the analog signal generator and to pro-
cess the data. The mass filter is preceeded by a number of electrodes to
focus the incoming ions into the quadrupole. The ions that pass through
the filter are detected by an electron multiplier. Output pulses of the
multiplier are counted. The counts in a given time period constitute the
primary data.

1.2.2 Principles of Operation of a QMF

The guadrupole mass filter consists of four circular rods spaced 90
degrees apart in a parallel array shown in Figure 1-3. The excitation sig-
nals connected between the pairs of opposing rods consists of a dc component
(U), and an RF component (V Cos wt.). An ion injected in the longitudinai
direction into the resulting electrical field oscillates between the opposing
rods as it travels towards the electron multiplier. At some specified quad-
rupole field conditions, ions of a given mass undergo stable oscillations
and reach the multiplier. Ions outside that mass range do not achieve stable

oscillations and strike the rods.

The motion of a singly charged ion in the quadrupole field is des-
cribed by Mathieu differential equations.7 The equations can be solved
in terms of the ion mass (m), the field radius (ro) and the above mentioned
quadrupole excitation signals. From the solutions the well known stability
diagram of Figure 1-2 may be obtained. Any combination of the quadrupole
parameters and ion masses that lie within the stable region result in
passage of those masses to the.mu1t1p1ier.

The mass scan is performed by varying the amplitude of the quadrupole
excitation signals while maintaining a constant U/V ration. The lines 1
and 2 in the stability diagram illustrate the effects of that ratio on the
performance of the mass filter. The slope of each line is proportional to
a given ratio. When the ratio is represented by 1ine 2, the mass filter
operates in a band-pass mode. A1l ions between masses M] and M2 are passed.

The two limits of the band-pass may be calculated from the stability diagram

as:
- 2 2

M] =4 eV/q] ro w
- 2 2

M2 = 4 eV/q2 row

where e is the charge of an ion. Operation with a ratio represented by
line 1 produces a narrower band-pass. Thus the ratio controls the resolu-
tion of the instrument, while the amplitude of the excitation signal
(frequency kept constant) determines the position of the filter within
the mass spectrum.

Another useful mode of operation of the quadrupole filter is obtained
when the ratio is reduced to zero. Under these conditions the instrument

becomes a high pass mass filter.

Is

L i

1.3 Mass Spectrometer Control

The task of the Proyrammable Control Unit (PCU-85) is to provide the
digital signals to the analog circuits that determine the position and
the bandwidth of the mass filter within the mass spectrum. The control
unit also determines whether the filter operates in the band-pass or the
high-pass modes. It establishes the necessary bias levels for the ion
optics and discriminates between the positive and the negative ion species.
Furthermore, the time interval spent examining a given amu domain is also
defined by the program of the control unit. Limited data management capa-
bility is included among the other tasks of the PCU-85.

A dc voltage generated by an A to D converter controls the amplitude
of the quadrupole excitation signals and thus determines the mass domain
to be investigated. The control signal may be a ramp if the filter is to
scan over a band of adjacent masses, or it may be a constant level when
jons of a single mass are to be examined. The ramp is generated by incre-
menting the digital control word to the DAC. The slope is determined by
the rate at which the PCU-85 increments the digital data. The slope as
well as the end points of the ramp are defined by the resident control
program. In this manner jumps and scans of differing rates may be combined
into a program to examine areas of interest within the mass spectrum bounded
by the capabilities of the instrument.

To control the resulution and the bandwidth of the mass filter the
ratio U/V is digitally selected using a multiplying DAC. The same dc vol-
tage that determines the amplitude of the RF signal to the quadrupole serves
as the reference voltage for the DAC. The resulting output voltage is ap-
plied to a fixed gain amplifier and thus becomes the dc component of the

quadrupole excitation signal.

Finally a number of control lines are used to select different modes
of operation and to set some of the bias voltages. Band-pass or high-pass
filter modes and the positive or negative ion detection modes are digitally
selected. To extend the mass range covered by the filter the RF frequency
may be switched. Lower frequency is used for the upper mass range; a higher
frequency is selected for the lower range of the amu's. Since the selected
mass is directly proportioned to the amplitude (V) and inversly proportional

to the square of the RF frequency &02), switching between the two frequencies

reduces the dynamic range over which the amplitude of the RF signal must be
controlled.

1.4 Mass Spectrometer Output

Ion impacts on the electron multiplier are counted. The count is

allowed to accumulate within a controlled time interval. If a possibility
of an overflow in the counter is detected the counting process is termi-
nated prematurely. In any case, the accumulated count and the time inter-
val during which the counter was active are transferred to a buffer memory.
When this temporary storage is filled, the collected data becomes avail-
able for a storage in a bulk memory and/or transferred to some other device.

In the present instrument, the data is displayed on CRT terminals.

*qwd 2y3 jo Indino pue 1a3jawmered
1013U0d pPaIeIV0888 ayl pue a3afxq Soreuy ‘*g-T 2andyg

98e310A
1013u0)
doamg 2a

‘T013U0)

enjels

ova
] »
) e
~ . E
. 193 FTduy -
ova T1041LNOD -

X0309380 Jeaq (A 2.1
(334Z) SOD A+ N = (3)°]
uAHHHMMM*IlILHllIII

T/A 2913TTdUy OQ

sasInd (I9frdiaInu
| S— (uox3031?)

ndang uo3joyd

/A o

J)
~—N1038TTI9SQ
B 0230,
T 9 e

ad z/u -H v Ve
293 7Tduy

CHAPTER 2 - HARDWARE DESIGN

This chapter provides a functional description and a circuit analysis
of the PCU-85 System.

2.1 Functional Description

As illustrated in Figure 2-1, the PCU-85 System is composed of the
following blocks.

2.1.1 1Intel 8085A Microprocessor (CPUf’

The CPU performs all the system processing functions and generates the
address and control signals required to access memory and I/0 ports.

Because ‘the 8085A multiplexes the 8-bit data bus and the lower 8-bit
address bus, the 8212 is used as a demultiplexer by latching the lower 8-bit
address bus during the first part of every machine cycle (read or write
cycle).. At the same .time, the 8155 latches the lower 8+«bit address -bus for its
internal use. For the remainder of the machine cycle, the bus is used as a
bidirectional data bus for memory and I/0 data transfers.

Therefore, the BO85A outputs sixteen bits on the unidirectional address
bus which are used to activate one of the devices connected on the bus for
information transfer.

The control bus determines the direction and the transfer of data on the
data bus within the proper timing windows dictated by the CPU operation
characteristics,

The 8085A has five signal lines via which devices can request an interrupt;
The CPU will respond by suspending its current operation and executes that
specific interrupt service routine. Once completed, the CPU recovers the sus-
pended program and continues its operation.

The serial I/0 interface is accomplished via the Serial Input Data (SID)

and Serial Output Data (SOD). Data on the SID and SOD lines are respectively

+5
6.144 MHz o
(3|_l PA,_ cz___:f
(l Address 0-7 Pulse
Bus —A Ao | Counter !
J- R . -
| Reset in Address Bus Drivers —] PB 8
EB'I A8, AIS D416 Ar7 o7 K—H .
- Ao
Q———-l Reset out 0-7
o6, Al5 DEMUX I
sob K;? Az s2ssa |
RS232C 8212 pC Data
interface SID 0-7 ¢::> Input
‘ Spare
i TAPE | Al RAM
:l“.’.._”:c_‘l 80854 bsuﬂor s — -
INTR As-g T P8g-7] : j| I
TRAP 2400 o ! o.c. !
RST 5.5 2BFF directional Ao-1 4 ,5;;::9 ,
RST6.5 DATA Bus DATA Bus lL] L PCo-3 | |
RST 7.5 = R W Do-7 L
18
Control Bus 4
=13 a1 PCo.7 Gy Spare
8
EPROM
CLK OUT ,
7 o T1e PA . o &— Soare
1536 —— 3072 A4-| 02254
MHz : - A4-2
2, [Timer Mibrory
TITi KH Library
qume! M——{ CONTROL e 0000
TIMER ouT ;‘
{LO/H1) | status f
RF ontrol
e,
=== Ratie | Apg-ForK>
: :Comrol
| IR | |
: (Spare) }
2568yte Control
RAM Ll Bus
[Drivers
Device A5
E‘Selac' —
[Decoder] i
“lz‘(“ls — . PULSEO/— PULSE 7/ j

Figure 2-1 - PCU-85 System

transferred using RIM and SIM instructions. A level converter for the RS232C
interface is provided primarily for testing the system. But other serial
interface systems can be connected to these lines for communication or serial
storage purposes.

2.1.2 Memory

Both Random Access Memory (RAM) and ultraviolet Erasable and Repro-
grammable Read Only Memory (EPROM) are used in the PCU-8S5.

The PCU-85 provides 2K bytes of static memory for data storage in
locations 2400 - 2BFB., The Intel 8155 RAM/IO/TIMER provides 256 bytes of static
RAM in locations 2000-20FF, which are reserved for the system monitor use.

Two Intel 2716 EPROM are used to provide an additional 4K bytes of read-
only memory.. s:Locations 0000-07FF contain dedicated programs collectively
defined as the PCU-85 system monitor. The remaining 2K bytes in locations
0800-0FFF contain the data library that are composed of blocks of five con-
trol parameters 16-bits each and blocks of pointers to the control parameters.
The system monitor operates on the data library to control the PCU-85 system
which in turn controls the mass spectrometer system operation.

2.1.3 Parallel 1/0 Interface and Programmable Timers

The parallel I/0 interface consists of nine general purpose ports pro-
vided by the Intel 8155 and two Intel 8255A programmable peripheral interface
(PPI). Each one of these ports can be programmed to be either an input port
or an output port. Each device cuntains four internal registers - one re-
gister for command/status and one data register for each of the three ports.

Ports A and B in the 8155 are programmed in the output latched mode for
Ratio and status. centrol. The ports of 8155, when they. are disconnected from
the mass spectrometer sy s tem, can be used to program the 2716 and the 2758
EPROMs via a program that could be installed in the system monitor socket.

Ports B and the lower 4-bits of ports C in the 8225A (A2l) are programmed

10

.,‘4..-....‘..-‘,_

in the output latched mode for de¢ sweep control.

Ports A and B in the 8225A (A22) are programmed in the input mode.

These ports are connected to the output of a 16-bit counter. Whenever data
pulses from the mass spectrometer output are to be sampled, the system monitor
clears the counter and then enables counting. The coﬁnting process is stopped
when a predetermined time interval has elapsed or when the counter becomes half
full. An interrupt is generated so that the CPU can read the results and
start the counting when needed.

The 8155 timer is a programmable l4-bit binary down counter that counts
the input pulses and outputs either a square wave or a pulse when the "terminal-
count" is reached. This timer is used to generate a 2KHz square wave.

The 8253 has three independent programmable 16-bit binary/decimal down
counters that count the input pulses on the negative edge of input clock and
output either a square wave or a pulse when the terminal-count is reached.
Counter 0 is used to output a pulse whenever the terminal count of the time
interval is reached. This pulse stops data collection and activates the RST
7.5 interrupt line. The clock input is selected to be either 1.536 MHz or
2 ¥Hz by one of the signals (LO/HI)RF from the Status Control port. This
gives uninterrupted time interval span between 0.651 us. (period of 1.536 MHz
clock) and 32.768 sec. (time for 216 counts at 2 KHz clock).

Counter 1 is used to activate the RST 6.5 interrupt lines to indicate to
the monitor that the RAM buffer is full. The monitor responds by filing the
data into a non-volatile storage media. However, the present monitor transfers
the data to be viewed on DEC scope VT 52 CRT Terminal. The'monitor, starting
from the Yeginning of the current break point, continues its Eontrol operation.

All 1/0 devices are interfaced to the bus structure as memory mapped 1/0,
that is, each device is assigned an area of memory address space. Locations

2100-21FF are reserved for memory mapped 1/0 devices. This hardware structure

11

W

results in a significant increase in overall s;eed and a2t the same time
reducing required program memory area.

The pulser which 18 a l-out-of-8 decoder 8205 is interfaced to the bus
system as an isolated I/0. When activated by software, it produces a 300 ns
pulse on one of its selected output lines that are used for hardware control
operation of some of the PCU-85 circuits.

2.2 Circuit Analysis

Both active~high and active-low signals are used in the PCU. A signal
mnemonic that ends with a virgule (e.g., MEMR/) denotes that the signal is
active-low (< 0.4V). Conversely, a signal mnemonic without a virgule (e.g.,
ALE) denotes that the signal is active-high (> 2.0V). Furthermore, a small
circle at the start or at the end of a signal line in the diagrams produces
the same result as the virgule does on the signal tmemonics. Therefore, the
circle denotes that the signal is'active-low. Conforming with industry
standards, the small circle and the virgule have been used interchangeably
in this paper.

The schematic diagram for PCU-85 is given in Appendix C. Each fumnctional
block of the PCﬁ is reproduced in this'chapter and analyzed.

2.2.1 Central Processor Unit CPU

Ve iV
e s i it . ot il i a " LA P

2.2.1.1 Initialization

The 8085A is not guaranteed to work until 500 psec after Vec reaches
4.,75V. Therefore, Intel suggests that RESET IN/ be kept low during this period.
An RC network can satisfy this requirement. Therefore, the time constant T
should be T = RC > 500 usec. For reliable operation, T is found experimentally
to be equal to 50 merec. With C = 1uf, R is calculated to be 50K. This is
shown in Figure 2.2.

This power-up sequence is used to set the CPU to a known internal state.

The 8085A responds by outputting a high pulse on RESET OUT and starts to

12

. % -INIT
> INIT/
) 6.144 MHz
+5vV
PWRS/ l—-lDt—l
50K N
4 %
1 ‘
PBl ’_)o—»- SET IN/ Upper 8 bit
luf —— 74LS00 741504 Ag-A 1 e rTr
I Bus (16)
| RST OUT ‘
N RESET OUT 5
3‘.972 MHz | %
50854 Lower 8 bit i
l°.536 Mz Address A -A } :_
2 CLK Latch o 7]
8 7 (A2)
;8212
| 2 READY o
»> OLD STB |
ALE — » ALE
¢ DA o
— INTR DATA BUS (8) _::> D,
¢+ INTA/ So >
> TRAP [1 —
—< BST 7.5 pps .
| RST 6.5 WR/ >
b RST 5.5 10/M/ s -
4 SID SoD >

i Figure 2-2. The 8085A and the 8212

13

execute instructions at location O with the interrupt system dis;ble. The
contents of the 8085A's registers (A, B, C, D, E, H, L) are changed with
indeterminate results.

The RESET OUT, which is synchronized to the system clock, is provided
for system reset. Whenever RESET IN/ is activated, RESET OUT initializes
the PCU-85 to a known state. Reseting can be done manually via a push button
or electrically by activating PWRS/line.

RESET IN/ input is provided with a Schmitt action input so that power-on
reset only requires an RC network. T§e two gates that buffer the RESET IN/
from the RC network are included to provide TTL signals INIT/ and INIT for
multiprocessor system synchronization.

2,2.1.2 The System Clock

The clock circuit is incorporated in the 8085A chip itself and provides
two inputs: Xl and XZ, that are connected to the 6.144 MHz crystal. The
input frequency is divided by 2 to give the internal operating frequency
which is available on the CLK output line. The CLK is used as the system
clock. Since the maximum operating frequency of the timer $253 is 2 MHz, the
system clock is further divided to produce 1.536 MHz, to be used as-an input

to the timer.

2.2.1.3 Timing and Control

2.2.1.3.1 Bus Timing and Control: An instruction cycle is the time

required to fetch and execute an instruction consisting of up to three bytes.
Each instruction cycle consists of up to five machine cycles. A machine cycle
(a READ or WRITE operation) is required each time the CPU accesses zemory or
an 1/0 port, The first machine cycle in every instruction cycle is an opcode
fetch, even if the execution of that instruction requires no reference memory.

Each machine cycle consists of a minimum of three and a maximum of six

state designated T

1 through T6. A state is defined as the interval between

14

e e
A

W' P e € s

two successive falling edges of the CPU clock which 13 equal to 326 nanoseconds.
When the READY input to the CPU is pulsed low an integral number of wait
states are inserted into the machine. This slows the speed of information
transfer on the Data Bus to a compatible speed that the memory of I/0 device
can respond to the CPU requests.

Figure 2-3 illustrates the relationship between an instruction cycle,

machine cycle, and T-state for a typical CPU instruction cycle.

- INSTRUCTION CYCLE
MACHINE -
CcYCLE M M2 - M3 > My
TSTATE L T L) T T T 3 N T2 ¢ L) T2 Lc
cLK
TYPE OF
MACHINE CYCLE MEMORY READ MEMORY READ MEMORY READ MEMORY WRITE
THE ADDRESS (CONTENTS OF YHE [THE ADDRESS [PC + 1) POINTS|YHE ADDRESS {PC + 2) POINTS| THE ADDRESS 1S THE DIRECT
PROGRAM COUNTER) POINTS TO THE YO THE SECONO BYTE OF |TO THE THIRD BYTE OF THE |ADDRESS ACCESSED IN My
ADDRESS BUS | FIRST BYTE |OPCODE) OF THE [THE INSTRUCTION INSTRUCTION AND M3
INSTRUCTION
DATA BUS LOW ORDER BYTE OF THE |HIGH ORDER BYYE OF THE |CONTENTS OF THE
INSTRUCTION OPCODE (STA) DIRECT ADDRESS DIRECT ADDRESS ACCUMULATOR

Figure 2-3. CPU timing for Store Accumulator Direct (STA) Instruction.

The 8085A'uses a multiplexed Data Bus. The address is split between the
higher 8-bit Address Bus and the lower 8-bit Address/Data Bus during the
T1~state of every machine cycle. The CPU pulses the Address Latch Enable (ALE)
high to Latch the lower 8-bit of the address intc the peripherals such as 8212
and 8155. ALE indicates the beginning of each machine cycle. and is used as
such in the debug circuitry.

During TZ and T3 states, RD/(WR/) is activated to transfer information
into (from) the 8085A from (into) the selected device. Walt states are in-

serted during this time when READY line is pulled low. To differentiate between

15

LT T —

memory and L/0 referencing; the CPU pulls IO/M/ line lov to enable memory
devices. and pulls 10/M/ high to enable L/0O devices. Decoding RD/, WR and
10/M/ signals, four OR gates and two inverters are used to provide four
separate control signals MEMR/, MEMWR/, IORD/, IOWR/.

The CPU felinquishes the use of buses during the T state,

RESET THALT

state, and T state.

HOLD TRESET state occurs after RESET IN is pulled low.

THALT state occurs after the execution of the HLT instruction, and THOLD state

occurs after pulling HOLD input high. In these conditions, the Address, Data

RD/, WR/, I0/M and ALE lines are tri-stated. Therefore, pull-up resistors of

50 kf? each are provided for the main control signals RD/ WR/, and IO/M/.

The CPU responds to a HOLD request from another Master (such as a DMA
controller or another 8085A) by raising HLDA line high. Once the HOLD request
is removed, HLDA goes low,and the 8085 regains control of the buses.

2.2.1.3.2 Interrupts: Interrupt Request (INRT) input, a gemeral

s

purpose interrupt, when activated the requester device inserts a RESTART or
CALL instruction synchronized by the Interrrupt Acknowledge (INTA/) signal
issued by the 8085A. Since RESTART is a one byte instruction, it is usually

used to jump to the interrupt service routine.

.

The CPU includes four vectored interrupts: TRAP, RST 7.5, RST 6.5, and RST
5.5. These restart interrupts cause an internal RESTART to be automatically
inserted. Each of the three RST input (7.5, 6.5, and 5.5) has a programmable
mask; TRAP is not maskable. The priority and vector location for each of
these restart interrupts are given in Table 2-1.

2,2.1.3.3 Status Information: Partially encoded status of every

machine cycle is directly available from the 8085A. So, S.,, and I0/M/ provide

1
the system with advanced timing of the type of bus transfer being done. Table

2-2 shows the encoded status of the machine cycle.

16

Vector
Intexrrupt Location .Priority
Trap 24 Highest
RST 7.5 3cC Second
RST 6.5 34 Third -
RST 5.5 2C Lowest

Table 2~1. Interrupt Vector Memory Locations

Machine Cycle 10/M/ s1 SO

X 0 0 0

Memory Write (MW) 0 0 1

Memory Read (MR) 0 1 0
, Opcode Fetch (OF) 0 1 1 4
| Halt * 1 0 0 |
1/0 Write (IOW) 1 o} 1
" 1/0 Read (IOR) 1 1] o

Interrupt Acknowledge (INTA) 1 1 1

Table 2-2. 8085A Machine Cycle Chart.
X = Unspecified, * = I0/M/ is tristated but the
50k pull-up resistor pulls it high.

Figure 2-4 shows 74LS138, l-out-of-8 decoder, used to provide output sig-
nals with the advanced status information given in Table 2-2. These outputs

are used to directly drive small power LED indicators.

2.2.1.3.4 Serial I/0 Communication: The data on the Serial Input Data

Line SID is loaded into an accumulator bit 7 whenever a RIM instruction is
executed. Similarly bit 7 is transferred to the Serial Output Data line SOD
{ whenever a SIM instruction 1is executed.

Signals of RS232 are of -5V (logical one) and +5V (zero). After power-up

17

+5V
'Y
[.)/ X—f7 s
o
S— i/ N
—_{— MR/ Y, c 10/M/
OF/
0 RESET OUT
wart | ?:1;
—s Y, 2
TOW/ 2.2k
‘ st Y5 E MAAA > sv
o) IR/ |, 3
S INTA/ Y6 Vee
7 N
f 5082-4584 i

Figure 2.4. Decoding of the Advanced Status Information.

+5V

5,6,8

RS-232 Q,

ouT IN6400 °<:::]-—-— oD

3 ¢ 741504
2200
8085A
SID

RS-232

IN

Figure 2-5. RS-232 interface circuits to SOD and SID. The numbers
on the input and output lines indicates pin connections
on the RS-232 connector (Cinch DB-255).

18

operation or following each reset, SOD is reset to zero. Logic zero is a
start bit in an ASCll word, therefare, a 74LS04 inverter is added between the
SOD and the RS232 interface.

A high on the base of Q2 turns off Q2 and the output at pin 3 is -5V.
With a low on the base of Q2, the transistor is turned on and the output is
at +5V. Ql also acts as an inverter with the output driven between 0 and +5V.
The diode 1N4148 suppresses the negative going voltage on the base of Q1 and
protects its base. A better interface is the MC1489 and MC1488 but the 1488
requires higher positive and negative voltage between 9 and 15 volts.

2.2.1.3.5 DEBUG (Single Step) Circuit: The DEBUG circuit shown in

Figure 2.6 enables the operator to examine the execution of a software pro-
gram either a byte or an instruction at a time.

The heart of the circuit is 74120, dual pulse synchronizer. It generates
either a single clock pulse when the mode control M is high or a train of clock
pulses synchronized with the control inputs Sl’ SZ’ and R when M is low. The
output pulses are started and stopped by the levels or pulses applied to the
control inputs in accordance with the truth function in Table 2-3. v

Clock pulses are passed to the output on a negative transition of 151(2S1)
or 152(282) and are stopped by a negative transition on the reset input 1R(2R).
But when either 151(2S1) is held low, pulses are passed regardless of the R
input's status. The SR-latch 74LS279 is used to produce a low level on 2S2
when 2R/ of A39 is grounded by switch SW2. With the switch in this positionm,
the WAIT/ position,A38-2 continues to pass clock pulses until a reset pulse is
received from the OF/ or MC/ signal lines depending on the position of switch
sWl.

ALE signal, inverted by a 74LS04 gate is used to indicate the begimming of

a Machine Cycle (MC/). The Op code fetch (OF/) signal is developed when both

19

-

741520 741804 741500
CCK/
741520 ‘
S
OF/(p41-2 L°
: 1
; sl ALE
‘ MC/
| 34
.‘ 74LS00
] R 2 A3l | READY
‘ 2¢
: 74120
‘ o82 R ¢ (A38-2)
Step 1Y p——-d 251
; = f__4 1s1 —q 252
] 74120 M
(A38-1) —.I_—
182 =
] 1K M
+5V 8085A
(A1)
RUN/ . 1 2R/ 2
Sw2 1.3k 13418279
+5V A39
WAIT/ | = 1.5K
50K ¢ S
W NN N ey
+5V
EX ROYP"
741500

WAITF/ _____@LLL

Figure 2-6. DEBUG (Single Step) Circuit.

20

Control Inputs Function
R S1 S§2.
X L X Pass Output Pulses
X X L Pass Output Pulses
L H H Inhibit Output Pulses
H H Start Output Pulses
H H Start Output Pulses
H H Stop Output Pulses
H H H Continue operation initiated by last transition
H = High Level = Transition from H to L
L = Low Level X = irrelevant
Table 2-3. Function Table for 74120
So and S1 are each equal to logic one. Since S° and S1 are level signals, ALE

and CLK/ are used to synchronize and gate one clock pulse at the output of the
NAND gate A41-2, A32 and A41-1 produce a 20 ns delay in the CLK/ signal to

allow So and S, to become stable levels since they change levels on the onset

1
of each ALE pulse. Thus, the OF/ pulse marks the beginning of the fetch of
the first byte of an instruction.

The 8085A samples the READY line just before the rising edge of the CLK
of the Tz—state in every machine cycle. The clock pulses on the READY iines
are delayed versions of the system clock. The 50 ns delay, produced via A29,
A38-2 and A3l propagation delays, is long enough for the READY to be sampled
high. Therefore, no wait states are inserted as long as these delayed clock
pulses are generated on the READY line.

The single step circuit is activated when 2S2 is pulled down by SW2. Then
OF/ or MC/ signal stops the CIK pulses into READY causing the processor to stop.
The 8085A will wait in idle state until STEP/ push button is depressed. While

waiting, the address bus will hold the address of the next instruction, and the

21

data bus will hold the contents of that location. This..iuformation is always
produced in Tl and '1‘2 states of every machine cycle. When the STEP/ button is
pressed, one clock pulse is gated to the output 1Y of A38~1 and is applied to
2S1 input of A38-2. The activation of 2S1 input causes the pulse synchronizer
A38-2 to gate CLK pulses to the READY line and allows the processor to complete
the machine cycle or the instruction cycle until the next reset pulse arrives
from the mode selection switch SWI1.

Repeated operation of the debug circuit allows the operator to examine the

address bus and the data bus for a possible error in the software program.

2.3 Address Decoding

2.3.1 Memory Addressing

The CPU supplies 16 address lines to the memory to be used to access a
specific byte memory location during a machine cycle. These 16~bits of the
Address Bus are divided into two groups of signals. The low order bits of the
bus are applied directly to the memory and the memory mapped I/0 chips as address
inputs.while the high order bits are applied to the chip select decoding logic.
The number of address bits assigned to each group is a function of the number of
addressable locations contained in the chips used.

As shown in Figure 2-7, the PCU uses lk of bytes chip selection lines
KO/ through K15/.

The upper 6 bits of the Address Bus are used to generate 16.
clusive chip-select lines via a 74LS154, 4-to-16 decoder(Al2). This provides
for 16K bytes of storage. The decoder is enabled by the active-low input sig-
nal Al4, AR5 and I0/M/ to select the lowest 16K bytes of storage. Other storage
locations can be decoded by selective inversion of Al4 and Al5 and the addition
of one decoder per 16K.

In the PCU system the lowest 8K bytes of storage is assigned to EPROM

22

N — ——”"_'—'—'—’":::a'

10/M/ K15/ . . : N
Al5 Gl K14/ . s
AL4 2 K1l p A9 — 1B ————— P3/
K10/ » A8 —F 1A ——p P2/
K9/ 7415139 > Pp1/
Al3Z——— i D »
A12 ———] C 1125 “I 1c 43 > ¥/
g
All-—————H‘B .
Ke/ °
AlO———dJ A / - o

K13/ 2
DM74LS1S6 [o) D.__Z_K_lz o I

(A12) K1/ C3

1 2K0 3
; ‘ +5V g e v Ch
cC |

A, A (A19)
o

o

3 Figure 2-7. Chip Select Decoding Logic

selections, where the system monitor and data library occupy the lowest 4k bytes.

Since the 2k bytes Intel 2716 EPROMs are used, the four lowest k-lines are com-
bined to peruce two select lines 2KO/ and 2Kl. The first line selects the
first 2k bytes of memory, and the second line selects the next 2k bytes.

The K8/ chip selection line is decoded further to provide for page (256
bytes) selection. A 74LS139, two-to-four decoder, (Al3) converts K8/, A8 and
A9 into four mutually exclusive select signals named PO/ through P3/. Table 2-4

gives a summary of page selection lines and the area of memory they select.

2.3.2 Memory Mapped 1/0 Addressing

An area of memory address space (2100-21FF) is assigned as I/0. This
architecture allows the manipulation of the peripheral devices by using the
[same instructions that are used to manipulate memory locations. At the same

time, a significant increase in overall speed and a reduction of program memory

23

oae

Page Line Area of Memory ‘ - Device Selection
PO/ 2000-20FF Working RAM memory 8155
Pl/ 2100-s1FF Memory mapped 1/0 devices A9, A20, A2l, A22
P2/ 2200-22FF Not used
P3/ 2300-23FF Not used

Table 2-4. Page Selection

area are achieved.
Most of Intel's programmable peripheral davices have four locations

addressable by the least significant two bits of the Address Bus, Ao and Al.

Therefore, the upper bits can be used for chip selection decoding. In Figure

2 A3 and

respectively, are decoded to

2-7, an 8205, three-to-eight decoder (Al9) is shown. Address lines A
A%,which drive the 8205 inputs Ao’ Al’ and A2
activate only one of the 8205 outputs named CO/ through C7/. The decoder is
enabled by the two selection lines K8/ and Pl1/. Table 2-5 summarizes the
used selection lines, associated devices and associated memory mapped I/0

locations.

2.3.3 1solated 1/0 Addressing

The 8085A separates the memory address space from I/0 address space and
uses two instructions, IN and OUT, for commudcation with the Accumulator. The
second byte of each instruction contains thé ;ddress of the I/0 port which is
duplicated onto both ADO—AD7 and Aa—Als. 'The.status signal I0/M/ when high
indicates that data transfer is to or from an I/0 port.

The PCU-85 uses an 8205, three-to-eight decoder, (A30), as 1/0 port shown
in Figure 2-8. This port generates a low-active pulse onto one of its outputs,
PULSEO/ through PULSE7/, selected by the address input lines Ao, Al and A_.

2
When I10/M/ and D8 have logic one level, the input El/ is activated low via a

24

.P..l. ‘ “—— :
- " 5 2 Py DU SO
e et Dot e A, o S it Kb AP Sl At i - s itan e il o ! !

NAND gate 74LS00 (A29). But the 8205 is not enabled until the control signal

WR/ is pulsed low. WR/ pulse duration defines the width of the pulse output
of the 8205 which is equal to 406 ns. Table 2-6 gives a summary of the 1/0

address used to activate one of the 8205 outputs, and the control function

associated with that output.

These output lines control various parts of the PCU-85 hardware system.
Their control functions are utilized when an OUT instruction is executed
with a port address 8X where X is a number between zero and seven specifying

the output line to be pulsed.

| Select Device Register
b Line " .]. Selected Selected Address Function A
co/ 8155 (A9) CSR 2100 Command/Status Register
PAl 2101 Port A, Ratio Control Output
PB1 2102 Port B, Mode Control Output ‘
PCl 2103 Spare f
cy/ 8155 (A9) LBT 2104 Low Order Byte of Timer 2ZKHz
HBT 2105 High Order Byte of Timer clock !
gigg Not used :
c2/ 8255A (A20) PA2 2108 Port A Connected to 74LS393 _
PB2 2109 Port B Counter for data Counter '
PC2 210A Spare |
CR 2108 Control Register j
. c3/ 8253 (A22) CRO 210C Counter Register Zero, Time
; Interval Count ;
CR1 210D Counter Register One, Number i
of Data Collected :
CR2 210E Counter Register Two (Spare)
CWR 210F Control Word Register :
c4/ 8255A (A21) PA3 2110 Port A D.C. Sweep . ;
PB3 2110 Port B Generator ;
PC3 2112 Port C, Spare
CR 2113 Control Register

Table 2-5. HEmory Mapped I/0 ports and their assigned addresses.

25

Trrr 1
o

A A
A° A° 0, p———-——» PULSEO/
Al Al 0, p—— PULSEL/
T0/M/% —— 2
02 ~—e——= PULSE2/
D8 —
/ IS
WR/ »dE2 03 PULSE3/
0, —— » PULSE4/
2.2K 4
AN}
v E3 0, |——+ PULSES/
V<:c 06 4+——— & PULSE6/
_——]&vD 0, |————+ PULSES/
- 8205 (ABO;
Figure 2-8. Pulser Circuit as an isolated 1/0 device.
I/0 Output
Address Activated Function
80 PULSEO/ Clear the data counter, data enable and time
interval flip flops.
81 PULSE1/ Set data and time interval flip flops (A25).
82 PULSE2/ Decrement Counter One of 8253.
83 PULSE3/ Initiate Decrementation of Counter One and
clear its flip flop (All).
84 - 87 PULSE4/ through Spare
PULSE9/
Table 2-6. Address of the pulser ouﬁputs and functions.
2.4 Memory

2.4,1 Read-Only Memory (ROM)

PCU-85 utilizes 4k bytes of ROM comprised of two Intel 2716 EPROMs A4-1

and A4-2. The 2716 is a 16,384-bit ultraviolet erasable and electrically pro-

grammable read-only memory (EPROM). The lowest eleven lines of the address bus,

o

A -~ AlO’ are connected to their counterpart pins on the EPROM. When the chip

select (CS/) input is activated, the signals on the address inputs of the EPROM

are internally decoded to select one of the 2K bytes of memory locations.

26

Strobing the output enables (OE/) input to the.2716, rgleases the output lines
Do»- D7 from the high impedance state and allows the content of the selected
memory locations to drive these lines.

As shown in Figure 2~9, two Intel 2716 EPROMs, (A4-1) and (A4-2), are
connected to the Data Bus and Address Bus. The OE/ input on each device is
strobed by the control line RD/. The chip selection lines 2KO/ and 2K1/ are
connected to CS/ inputs of (A4-1) and A4-2) respectively. When one of the chips

is selected, the read operation is initiated during T, state when the CPU pulls

2
the RD/ line low which controls data from that chip on and off the Data Bus
by way of OE/ imput.

A4-1 with address 0000-07FF contains the system monitor program, while

A4~2 with address 0800 -OFFF contains the Data Library.

2) Address Bus

2Kk0/ ———® cs/ A -Ao A-A, Cs/ 2K1/
2716 (A4~1) 2716 (A4-2)
, DATA BUS (D _-D.) {

Figure 2-9. Two Intel 2716 EPROMs

27

i L ADDRESS BUS

' CE1l I CE1p~ CElJ_
CE2 CE2 CE2
(AS5) (A6) (A7)
ach | At K| a
2142 oD [RD/ 2142 op|Rrp/ 2142 0D /F;lz/ .
WE/WR/ WE/|WR/ WE/WR/
—1/0,_, f] 10, | =0 | =D
4 4 4 4
8 8
\ _ Datg BUS
co/— ___ 2
cyf —t_/ 8
741508 74LS04
‘ Po/ ‘
o 74LS08
| ALE CE T0/M/ AD -4D,
I RD 8155 (A9)
————pd WR _ - _
PA, PAA. PB_-PB, PC_-PC,
Ratio Control Mode Control Spare

Figure 2-10. Memory System

28

2.4.2 Random Access Memory (RAM)

The PCU-85 includes 2048 bytes of static RAM in (AS5) - (A8) by using four
Intel 2142 memory devices for temporary storage of sampled data. The 256 bytes
of RAM in 8155 (A9) is used as a working RAM to store pointers, parameters and
the stack. Memory address block 2400-2BFF is contained in AS - A8 and memory
address block 2000-20FF is contained in A9.

2.4.2.1 Intel 2142 RAM

The Intel 2142 is a 4096-bit static Random Access Memory organized as 1024
words by 4-bits. Two chip selects (CS1/ and CS2) are provided for selection of
individual packages when outputs are OR-tied. An output disable (OD) is in-
cluded for direct control of the output buffers.

As shown in Figure 2-10, four of 2142 devices are organized in groups of
two packages. (A5) and (A6) are selected by the chip select signal K9/, while
(A7) and (A8) are selected by the chip select signal K10/. All chip enable in-
puts (CE2) are connected to one 2.2 KQ pull-up resistor. Therefore, when CEl/
is driven low by K9/ or K10/, memory address block 2400-2BFF is selected.

When (AS5) - (A6) or (A7) -~ (A8) is enabled, the target location is speci-
fied by address bits Ao - A9. During a read operation, the control line RD/
is activated low which enables the output buffer on the selected 2142 RAM.
However, the data output buffer is disabled during a write operation by a false

A (high) RD/ signal applied to the Output Disable (OD) input pin. Thus, a write
operation occurs.to'the:selected - target when-WR/-1s activated: low by the CPU.

2.4.2.2 8155 RAM

The 8155, shown in Figure 2-10, is a RAM with 1/0 ports and timer. The
RAM portion is designed with 2k bit static cells organized as 256 x 8. The
8155 is enabled by driving the CE input low. This is accomplished by activating]

the memory chip selection line PO/, or one of the memory-mapped chip selection

29

lines CO/ and Cl/.. When low, 1Q/M/ input selects the memory section and when i
high it selects the 1/0 ports (PA,PB,PC) and timer section. IO/M/is always ! [j
low, unless CO/ or Cl/ is activated low which drives the I0/M/high via the in-
verter (A28). L

The trailing edge of the address latch enable (ALE) signal latches in the
target address bits specifiéd by data bus bits ADO~-AD7. During a write oper-~

ation, the CPU WR/ 1s true and write occurs; during a read operation, the CPU

RD/ output is true and a read occurs. Data is read from or is written into (A9)
via its address/data pins ADO-AD7. The Reset input initializes the three I/O
ports to input modes. Timer In and Timer Out are input and output pins respec-
tively, and are associated with the 14 bit timer in the 8155.

2,5 BUS Buffers and Loading Calculation

A crucial point in the design of a bus-structured system is the consider-
ation of the dynamic and the static loading of each device connected to the
system bus. For-critical loads, buffers should be added to provide driving
capability and to add a safe margin in the operating conditions of all devices

with surrounding environment changes such as temperature and humidity. In

E addition to increasing the relaibility of the system, buffers allow more devices
¥ to be connected to the system up to a limit.
L In Figure 2-1, buffers for the system bus are provided in the circuit not

only to enhance the driving capability of the three buses but also to reduce
their dynamic loadings.

2.5.1 Static Loadings

As a general rule, loading on the bus must be kept less than the current
driving capability of the weakest driver in the system. The PCU-85 has two
types of bus structures. The first type is a uni-directional bus that con-

sists of the Address Bus and the Control Bus onto which information is trans-

30

ferred in either direction at a time. Table 2~6 tabulates all the deyices
that are used in the PCUx85 system.and the corresponding electrical charac-
teristics. The contents of the table will be used in the System Bus Loading

Calculation.

DEVICE | I_ (MA) IIL(MA) IOH(MA) IOL(MA) CIN(pF) COUT(pF) Testload for A.C. Characteristics

IH

8085a |[0.010 |0.010 |-0.400 | 2.0 10 20 150 pF (2)

2142 0.010 [0.010 f-1.000 | 2.1 5 5 100 pF

8155 0.010 |-0.010 |-0.400 | 2.0 10 20 150 pF (2)

8205 0.010 |-0.250 |-1.500 | 10.0 5 7 150 pF (3)

8212 0.010 |-0.250 {-1.000 | 15.0 9 12 150 pF (3)

8253 0.010 |-0.010 |-0.400 | 2.0 10 20 100 pF

8255A | 0.010 |-0.010|-0.400 [2.5 10 20 100 pF

2716 0.010 |-0.010}-0.400 | 2.1 6 12 100 pF

7415244 | 0.020 | -0.200 | -15.0 | 24.0 10 12 (4) can drive 1000 pF

74182451 0.020 | -0.200 [-15.0 | 24.0 10 12 (4) can drive 1000 pF
DM74LS154 | 0.020 | -0.360 | -0.400 | 8.0 10 12 (4) can drive 1000 pF

741500 | 0.020 | -0.400 | -0.400 | 8.0 5 7 (4)

741504 | 0.020 | -0.400 | -0.400 | 8.0 5 7 (4)

741508 | 0.020 | -0.400]-0.400| 8.0 5 7 (4)

741832 | 0.020 | -0.400 | -0.400 | 8.0 5 7 (4)

7415139 | 0.020 | -0.400 | -0.400 | 8.0 5 7 (4)

7415138] 0.020 | -0.400 | -0.400 | 8.0 5 7 (4)

74Ls38 | 0.020 | -0.400}-0.250 | 24.0 5 7 (4)

Table 2-6. Electrical characteristics over recommended free-air temperature
range of the devices connected to the bus structure.

1 - Current out of a terminal is given as negative value. .
CIN and COUT of Intel devices are less than 10 and 20 pF respectively as quoted by

Intel's application engineer in California.
3 - These values are sampled as typical test load from the manufacturer's "data to out-
put delay versus load capacitance' graph. In this graph, the maximum propagation
delay, specified in the data sheet, is introduced by a capacitive load of 300 pf
for the 8212, and of 200 pf for 8205.
4 - Capacitance values were quoted by T.I.'s application engineer in Dallas.

31

2.5.1.1 Address Bus

Because of the multiplexed bus structure of the 8085A, the addition of
8212 for demultiplexing the data bus provides for the incidental buffering
action for the lower 8 bits of the address bus. Tables 2-7 and 2-8 tabulate
the devices connected to the lower 8 bits and upper 8 bits of the Address Bus,
and their corresponding input current drive. The total load on the Address
Bus is computed and subtracted from the drive capability of the 8085A and the
8212. 1In both cases, there is a substantial amount of reserve drive for both
logic-low and logic-ﬁigh situations.

A similar calculation procedure is carried out in Table 2-9 for the lower
8 bits of the Buffered Address Bus with the same results. The upper 8 bits of
the Buffered Address Bus are not connected to any device, but are provided for

system expansion.

l DEVICE 1., (MA) 1., (MA)
74L8154, Decoder 0.020 0.360
74LS139, Decoder 0.020 0.400
2716 (TWO), EPROM 0.020 0.020
2142 (FOUR), RAM 0.040 0.040
74L5244, Buffer 0.020 0.200
TOTAL LOAD ' 0.120 1.020
Nominal drive from 8085A outputs 0.400 2.000 .
Reserve drive 0.280 0.880

Table 2-7. Static loading for the Upper 8 bits of the Address Bus.

It is observed from Tables 2-7, 2-8 and 2-9 that the Address Bus buffers
74L8244, (Al6) and (Al7), can be removed and leave the Address Bus with almost
the same substantial amount of reserve drive. But, dynamic loading calculations

show that these buffers are required to reduce the capacitive loading on the bus.

32

‘ 1
DEVICE L) I, (M)
2142 (FOUR)» RAM ‘ 0.04 0.040
2716 (TWO), EPROM 0.02 0.020
| : 7418244, Buffer 0.02 0,200 H
TOTAL . LOAD 0.08 0.260
Nominal drive from 8212 outputs 1.00 15.000
S Reserve drive 0.92 14.740
r Table 2-8. Static loading for the Lower 8 bits of the Address Bus.
!
1
DEVICE IIH(MA) IIL(MA) |
8205, Decoder 0.010 0.250 |
1 8255A (TWO), Programmable Pexripheral
- Interface (PPI) 0.020 0.020
8253 0.020 0.020) B
' TOTAL LOAD 0.050 0.290 1
Nominal drive from 74LS244 (Al6) 15.000 4 '
Reserve drive , 14,950 23.710 !
i

Table 2-9. Static loading for the buffered lower 8 bits of
the Address Bus.

2.5.1.2 Control Bus

-, Figure 2-11 shows Control Bus Buffer using 74LS244, a 3-state output
octal buffer. The buffer is enabled all the time, since its control inputs 1G/

. and 2G/ are grounded.

L At it 07 =

An example of static loading calculation of the control bus is shown in

Table 2-10 for RD/ control line, as a typical control line.

33

e =

RD/ 2 pe—» o8/ o
WR/ 4 15 o WR/
k §0Y) — 14 o 10/MB/
RESET OUT 8, L2 5 RST BUF
ALE 11, ¢l _» ALE B
. INTA/ 1330 A15 Ly INTAB/ >
- HLDA —— 15] b, HLDAB '
ek ——2Lyl 7415244 Pt CLKB
1G
_57[::::32c

Figure 2-11. Control Bus Buffer.

DEVICE Ig(MA) IIL(M{\)
2142 (FOUR), RAM 0.040 0.040
4 8155, RAM/I0/TIMER 0.010 0.010
74LS32 (TWO) OR gate 0.040 0.800 i
!
7418244, Buffer 0.020 0.400 ;
TOTAL LOAD 0.110 1.250 ;
Nominal drive frowm 8085A 0.400 2.00 ;
Reserve drive 0.290 0.750 é
i

Table 2~10. Static loading for RD/ control line.

2.5.1.3 Data Bus }

The Data Bus, being bi-~directional by nature, requires each drive that |
transfers information into it to be capable of driving the rest of the devices
on the bus. These devices, when enabled, must be capable of driving the Intel's
8085A Data Bus. They are:

1. The 8085A, which drives the bus during all write operations.

2. The 8155, which drives the bus during read operations.

3. Two of the 2142, which drive the bus during read operations.

4. The 2715, which drives the bus during read operations.

5. The 74LS245, which drives the bus during read operations.

34

The first four devices have the lowest, although equal, driving capability.

Proper operation of the system requires the total load on the Data Bus to be less
than any of the first four devices' drive capability. The loads presented to

the bus are summarized with respect to the 8085A microprocessor shown in

Table 2-11. There is a substantial amount of reserve drive on the Data Bus.

DEVICE I, I,,(MA)
2716 (TWO), EPROM 0.020 0.020 '
2142 (TWO), RAM 0.020 0.020
8155, RAM/I/O/TIMER 0.010 0.010 j
8212, Latch 0.010 0.250 ‘
74LS00, Nand Gate connected to D8 0.020 0.400
7418245, Buffer 0.020 0.200 \
TOTAL LOAD 0.100 0.900
Nominal drive from 8085A 0.400 2.000
Reserve drive '

Table 2-11. Static loading calculation for the Data Bus.

0.300 1.100 }

There is a substantial amount of reserve drive on the Data Bus.

Figure 2-12 shows 74LS245, an octal bus transceiver, that is used to buf-

fer the 8085A Data Bus. The outputs are enabled when P1l/, the memory mapped

selection line, activates the control pin G/.

pins of the Address Bus Buffers 74LS244.

P1/ also activates the control

The direction of data transfer from the A-Bus to the B-Bus or from B-Bus to -

the A-Bus depends upon the logic level at the direction control (DIR) input, as

shown in Table 2-12.

ENABLE Gl DIRECTION CONTROL (DIR) OPERATION
L L B data to A bus
L H A data to B bus
H X Isolation

Table 2-12. Function Table of 74LS245.

35

. A i A e R ER. O ‘
P1/
) G/ G
A-BUS T o

5 2 > B-BUS :; ‘g
S o I\ Al-A7 Bl-B7 <
® fe] 3 o

p= 8 8 a o

a a
P

INTAB/ ‘) IR
74LS08

Figure 2-12. Data Bus Buffer

s = —

During read operation RDB/ is pulled down, or INTAB/ is pulled down {(when
interrupt on INTR input of the 8085A is acknowledged). These two signals are
ANDed by a 74LS08 gate and the output is connnected to DIR input. Therefore DIR
goes low when a read operation by the B085A is required from the Buffered Data Bus.
Table 2-13 shows that the buffered Data Bus has an ample of driving capa- i

bility with respect to the weakest device, the 8253.

DEVICE Loy (M8) I, (MA)
8255A, (TW0), PPI 0.020 0.020
7418245, Buffer 0.020 0.200
TOTAL LOAD 0.040 0.220
Nominal drive from the 8253 0.400 2.000
Reserve drive 0.360 1.780

Table 2-13. Static Loading for the Buffered Data Bus.

2.5.2 Dynamic Loading

The maximum allowable memory or I/0 access time is the interval between the
device address becoming available to the device and the output from that device
becoming available to the Data Bus. AC characteristics including access time of

integrated circuits are specified by the manufacurer at some particular capacitive

36

load. If this load is exceeded, the system bus will operate too slowly and
causes unreliable operation. In addition, propagation delays of all devices
such as buffers which interface the microprocessor to the target device reduce
further the device access time.

2.5.2.1 Capacitive Loading

When the 8085A is to be operated near its maximum operating frequency for
the system designs the read and write cycle times become critical. Then the
capacitive load, which is composed of wiring capacitance and component capaci-
tances on the Data and Address Buses, should be considered. This consideration,
rather than static load, will dictate the addition of buffers on the system bus.

2.5.2.1.1 Address Bus

The capacitive loads of the address input pins of all devices connected
to the Address Bus must be added and compared with the rated capacitive load
that can be driven by the Address Bus. For the 8085A, this specification is
rated at a capacitive load of 150 pf. However, larger loads can be driven if
an increase in the delay of the Address Bus's signals can be tolerated. Tables
2-14 and 2-15 provide a summary of capacitive loading calculation. A substan-—

tial reserve capacitive driving capability is indicated in both tables.

DEVICE Max. CIN (pF) DEVICE Max. CIN (pF)

2142 (FOUR) 20 2142 (FOUR) 20

74L8154 (ONE) 10 2716 (TWO) 12

2716 (TWO) 12 74LS244 (ONE) 10

7415244 (ONE) 10 Total Capacitance 42

Total Capacitance 52 Nominal Drive from 82}2 150

Nominal Load 8085A 150 Reserve 108
Reserve 98 : Table 2-15. Capacitive loading calcu-

lation for the Lower 8-bit Address Bus.
Table 2-14. Capacitive loading calcu-
lation for the Upper 8-bit Address Bus.

37

‘[‘. | J
PP L a a

A similar conaideration for the lower 8 bits of :h. Buffered Address Bus
is provided in Table 2-16. The address buffer, 74LS244, is tested by Texas In-
struments with a 45 pF capacitive load which produced a maximum propagation
delay of 18 ns. The delay times increase at an average1 of 0.08 ns/pF for
larger values of capacitive load. Therefore, an increase of a 100 pF load will
add an increase of 8 ns. delay. Each of Inte's peripheral devices requires a
ninimum access time of 400 ns. Since the 8085A allows a 590 ns. "Valid address
to valid data in" time interval, a 190 ns. of time margin is available. The
above additive time delays of (18 + 8) 26 ns., and the 30 ns. propagation delay
produced by the lower 8 bits address latch 8212 (A2), are added to 56 ns. This
is well within the 190 ns. design margin.

In conclusion, as seen from the above calculations, The Address Buffers
7415244 are not needed in the present system. However, it is included for

future system expansion.

DEVICE Max. CIN {(pF)

8205 (ONE) 5
8255A (TWO) 20
8253 (ONE) 10
Total Capacitance 35
Nominal Drive Available from 145
1418244 .

Reserve 110

Table 2-16. Capacitive loading calculation for
the lower 8-bit Buffered Address Bus.

Calculated from Qutput Loading Performance Bulk Capacitance, "Low Power Bus
Drivers and Tranceivers the LS240 Series Engineering Guide", by Texas
instruments Incorporated, 1977. pp. 23-24.

38

i ———e : ;___mmﬂ
- -

2.5.2.1.2 Data Bus

Similar considerations are carried out in Tables 2-17 and 2-18 for the
Data Bus and the Buffered Data Bus. The capacitive loading is most critical
on the output pins of memory components, and I/0 components since their rated
capacitive load is specified at 100 pF which is lower than that of the 8085A
o address/data pins. All bus drivers and transceivers of the 74LS240 series have
L similar electrical characteristics such as capacitive loading. With the pre-
| vious justification, the 74LS245 outputs can drive a 145 pf load with a maximum

of 26 ns. time delay.

! DEVICE Max. C (pF) DEVICE Max. C (pF)
8085A (ONE) 10 8255A (ONE) 20

] 8155 (ONE) 10 8253 (ONE) : 20
2142 (TWO) 10 7418245 (ONE) ‘ 12
8212 (ONE) 9 Total 52
7415245 (ONE) 10 Nominal load 8255A | 100
2716 (TWO) 24 Reserve 48
Total 73 Table 2-18. Capacitive loading calcu-

lation for the Buffered Data Bus.

Nominal load 2142 100
Reserve 27

Table 2-17. Capacitive loading
calculation for the Data Bus.

Capacitive loadings are calculated and compared to the capacitive driving
capability of the weakest device connected on the Data Bus. If the data bus
buffer 74LS245 is removed, the 2142 would have a 128 pF capacitance load on its

output pins, which exceeds its 100 pF limit. The only effect of additional

capacitance is the slowing of the signal's rise time. But the 8085A provides

a 590 ns. access time for the target device which exceeds the maximum access

39

time required by the 2142 by 140 ns. This excess in tining design nargin
allows additional capacitance to be added, so long as the 140 ns. is not ex-
ceeded. An excess of 100 pF capacitance will impose an e;timate of 25 ns.

additional delay. Although not mandatory, the 74LS245 is provided to allow j

for future system expansion while at the same time it reduces the capacitive
loading on the 8085A Data Bus.

Wiring capacitance per line on the bus might add an estimate of 14 pF to

the total capacitance. This is based on the assumption that each integrated
[circuit added on the bus line is going to accumulate a 2 pF of wiring capaci-
tance to the total. In each of the previous capacitive loading calculation's

tables, the wiring capacitance is below the reserve driving capability of the

H Bus.
p 2.5.2.2 Propagation Delgy:

Connecting buffers between the 8085A immediate system bus and additional

memory and/or I/0 devices 1solates the static and capacitive loads from the

bus system while adding 30 ns. to the apparent access times of components
located beyond the buffers. Fortunately, the bus timing of the 8085A provides
ample design margin compared to its predecessor the 8080A-1.

. 2.5.2.2.1 Read Operation

Figure 2-13 shows maximum available access timing with which the 8085A
will function over the full environmental operating range. The parameters

shown in Figure 2-13 are defined in Table 2-19 and are used to calculate the

et A e mrane

maximum allowable access time. The time delay for chip select decode logic is

not included in the access time calculation. The decode logic circuits 74LS154,

7418139 ana 8205 will collectively introduce (19 + 33 +18) = 70 ns. maximunm.

However, the specification for typical memory or I/0 component show that the

chip select signal can be applied somewhat later than the address without intro-

ducing extra delays in the availability of data.

40

t
. AD — |

% Address Valid Before Buffer // / /

‘_tAB

—_— ,
///// Address Valid After Buffer %////%%,
D e

— e]

¢ Y

2. U .

Figure 2-13. Read Cycle Timing

Parameter Definition Circuit Maxinun (as.
€ Valid address to Valid Data In =l§; X toyo - 225 | 8085A | 590
taB Address Buffer Delay 8212 and 74LS244 60
tos Data Buffer Delay 74LS245 . 30
tac Maximum Allowable Access Time Target Device 500
teve 8085A Clock Period 8085A 325

Table 2-19. Definition of Parameters used in Figure 2-13.

The linear equation for calculating t AC is derived from Figure 2-13 as
follows: tc = tAD ~tg "ty = 590 - 60 - 30 = 500 ns.
Any device with 500ns. or less access time can be used in the buffered

area. The 8255A and 8253 require a maximum access time of 250 ns. and 350 ns.

respectively.

41

s e

2.5.2.2.2 Write Qperation

The write operation requires an address and the decoded chip select sig-
nal to the target device to be valid before the initiation of the write pulse.
Also the data that 1is plaéed on the Data Bus must be valid before and after
the end of the control pulse. A typical write timing for memcry or I/0 devices
is shown in Figure 2-14. A summary of write timing parameters required by the
8253 and the 8255A, and the corresponding timing parameters provided by the

8085A are given in Table 2-20.

Chip Select/ |
—| ot
—o ety '

e | 2/
. > |e— !
L - vy

Buffered Data .
%Z?’ 7 E%g% i

Control Signal WR/

t _.l ¢
Buffered Contnrol Signal WRB/ |¢———————ee AW i#l t

Figure 2-14. Write timing and delay parameters.

The critical timing delay is the length of time it takes to generate the
address and decode the chip select signal to the target device. This delay
must be completed before the write pulse is initiated. An analysis of the timing
parameters will indicate that there is sufficient time for the address to become

stable before the write pulses are applied. The equation for calculating the

42

address set up time at the device input is given by: CawB = tw (providad by

the 8085A) -~ ¢, + tep = 270 - 60 + 30 = 240 ns. .

AB

Reqﬁired By - | Provided by Buffer
Parameters Definition 8253 8255A 8085A Delay
tAB Address Buffer Delay - —— — 60
| top Chip Select Delay - -—- — 70
the Data Buffer Delay - ——— -— 30
tCB Control Bgffer Delay - - - 30
taw Address Stable Before Write 50 0 270
tua Address Stable After Write 30 | 20 - 120
tow Data Valid Before Write 300 100 420
tD Data Valid After Write 40 30 100
tow Write Pulse Width 400 400 400
Table 2-20. Write Timing Parameters. .

This and the rest of the AC parameters provided by the 8085A are larger

than the required parameters by Intel's 8080A microporcessor peripheral devices

and all compatible memory devices. However, for a better reliable system, the

8085A peripheral devices, differentiated from the 8080A peripheral devices by

the suffix (-5), should be used instead. The 8085A peripheral devices have im-

FrT— Y

proved AC characteristics. For example, the 8253-5 requires a write pulse

width of 300 ns. instead of 400 ns. required by the 8253.

2.6 1/0 Devices
As shown in Figure 2-15, four of Intel's peripherals (8155, 8253, and two
8255A's) are used to interface the processor section (the 8085A and memory) to

the analog driver of the Quadrupole Mass Filter (QMF). Structurely configured

43

IND
wol3 e3led

noejia3uy [eaaydyaad GT-7 '8BT4

<

J7oasma

ZHW9EG T b4 .
IdN¥YFINI S°L ISY [7ane isu HR ¢l0°¢
—
i 4
(3Q) 91qeug uorsinby eieq P N | e
_. lw I | Toriuop | 2a(1E/0T)
IV : EE—
€6ESTOL pd of o E6ESTVL a2 o..L o780T " 915y A
wosl] ¥ , —— /€£45'Ind
c C F /23s1nd
P LNO \ £ N TALVO1LA0 10 1IN0 b
n<mlo<m hmmlomm 7-°0d . 109LSY QiL Y10 LVO1 ™ [ASL]
LASHT ‘
g 9ae
(0zv) vssz8 /@ /204 (zzv) €528 a1V s
Le-%a 1-% /so /am /M Lq-°q v-v /50 A1) |
1 = 1 b ﬂﬂ
M Sng SS3i1ppy poiajing
C C y3dang _8
A K.ll S
¥ sng ejeq poisjyng th viva m
o
N &
4
o w
tq-°q 1-°v 1asTa p—a091sy | (ev) 1-%av g
(1zv) \3114] /@ o 90y GST8 NI ¥aWIL
o
(-"ad €-%a -"0d 1=™N& o fumle—yqun | -"va (-°2a 100 YANIL
_ daams q _ MW @ _ fo11uo) orieyftoziuopy sniead saedg
.) 9a1edg

44

'!'r-‘----------"""""""""'"""""'!"""""—*

as memory mapped 1/0, each device is connected to the buffered bus system, ex-
cept the 8155 which 1s connected to the 8085A Data Bus aﬁd Control Bus. The
chip select signal CE/ on each device is used to enable communication between
the selected peripheral and the 8085A CPU. The direction of data transfer is

controlled by the activation of RD/ or WR/ signals.
2.6.1 1/0 Ports

The 1/0 section of the 8155 or the 8255A consists of four separate regi-
sters connected to an internal bus which is managed by an internal logic section.
These registers—-ports A, B, C and the Control Word Register-- are selected by
the two port select signals (Ao,Al). These signals, in conjunction with the RD/
WR/ and CS/ control the selection of one of the four registers. A summary of
the control operation is given in Tables 2-21 (b) and (c). When ports A,B, or C
is specified, the operation is an I/0 port data transfer. The internal logic of
the device will select the specified I/0 port and perform the data transfer be-

tween the I/0 port and the CPU.

The functional configuration of each port is controlled by the system's
software. When the control word register is selected, the internal légic per-
forms the operation described by the control word. The modes of operation for
ports A, B and C are separately selected by an 8~bit control word. During syst-
em initialization, the PCU~85 software monitor programs each I/0 port to be
either an input or an output depending on the control word for that device, and
the interfacing function assigned to it. Table 2-22 summarizes these functional
assignments and the associated device control word in hexadecimal system. The
I/0 sections of A9 and A2l are programmed as latched output interface to the QMF

by loading the command registers with the control words CF and 80 respectively.

45

L .
r CS|RD|WR A 14, Operation A 14, RD|WR|CS Operation
0 {1 {0 {0 {0 {Load Counter No. O C |0 10 {1 {0 jRead Port A
0 |1 {0 {0 |1 |Load Counter No. 1 0 |1 1 Read Port B
0 |1 {0 {1 {0 [Load Counter No. 2 110 1 |0 jRead Port C
| 0 11 10 11 |1 |Write Mode Word
0 [o [1 [0 o [Read Counter No. 0O 0 {o {1 [0 [0 |Load Port A
0 [0 |1 |0 |1 |Read Counter No. 1 0 1 {0 {0 |Load Port B
i’ 0 {0 {1 |1 |0 |Read Counter No. 2 1 {0 |1 10 |0 {Load Port C
E 0 |0 |1 |1 {1 jNo-Operation 3-State L 1 |1 {0 |O]|Load Port Control Reg.
: 1 |X |X |X IX |Disable 3-State
| 0 11 {1 Ix IX INo-Operation 3-State| {X [X {X |X |] |Disable 3-State
; (a) 8253 Basic Operation 141]0 {1 {0 {Illegal Condition
X |X {1 §1 |0 [No~Operation 3-State
(b) B8255A Basic Operation
1
I0/M = 1, 1/0 Operation.
cs/ RD/ WR/ l A2 Al AQ Operation
0 1 0 0 0 0 Load Command/Status Register
0 1 0 0 0 1 Load Port A :
0 1 0 0 1 0 Load Port B {
0 1 0 0 1 1 Load Port C
0 1 0 1 0 0 Load Low-order 8-bit of timer count
Load. high 6-bits of timer count
0 . €'0 1 0 ! and 2-bits of timer mode
c 0 1 0 0 0 Read Status Register
0 0 1 0 0 1 Read Port A :
0 0 1 0 1 o Read Port B
0 0 1 o 1 1 Read Port C
0 0 1 1 0 0 Read low~order bits of timer count |
0 0 1 1 0 1 Read high-order bits of timer
1 X X X X X Disable 3-state
S 1 1 X X X No operation

(c) 8155 1/0 Port and Timer Basic Operation.

Table 2-21, 1/0 ports and timers addressing and operational modes with
respect to the Data Bus.
46

DEVICE PORTS CONFIGURATION cgggm. (HEX)| FUNCTION IN CONJUNCTION WITH THE QMF
8155A (A9) | Al Output Ratio Co;u:rol (8 bits)
Bl Output Status Control (8 bits) ?
Cl Output Spare (6 bits) %
CWR CF A
] 8255A (A20)| A2 Input Lower 8 bits of Pulse Data Count ‘
{ B2 Input Upper 8 bits of Pulse Data Count }
(o Output Spare (8B bits) i
3 CR 92
8255A (A21)! A3 Output Spare (8 bits)
] B3 Output Lower 8 bits of Voltage Sweep Control
) 1/2 C3] Output Upper 4 bits of Voltage Sweep Control
1 1/2 C3] Output Spare (4 bits)
CR 80
Table 2-22. 1I/0 Ports Functional Configuration and Control Word Assignment. i
u | k

Output pulses from the QMF are accumulated in a 16-bit counter. The
counter is composed of two catenated dual negative-edge-triggered 4-bit binary
counters 74LS393, A23 and A24. The 16-bit output lines of the counter are

connected to ports A and B of the 8255A (A20). The sampling of each word count

to each sampling, the counter is cleared by pulsing the CLEAR line high. Then

is controlled by the software monitor via the data acquisition control. Prior ’
|
the data pulses are gated to the input of the counter (1A) by pulling the Data

| ‘ Acquisition Enable (DE) signal high. At any time, the 16-bit word count can

be read by the microprocessor through ports A and B of A20.

47

To prevent overflow of the word count, the.most si1ificant bit of the
counter is used as an overflow flag (OFLAG). Whenever the OFLAG goes high in-
dicating that the counter is half full it pulls the DE si;nal down via the Data
Acquisition Control to inhibit pulse counting. At the same time, RST7.5 in-
terrupt line is pulsed high, and the 8085A responds by reading and storing the
word count. Then the sampling process is repeated under the control of the

software.

2.6.2 Programmable Interval Timers/Counters

PCU-85 includes four timers/counters composed of a l4-bit down-counter in
8155 (A9), and three indepeundent 16-bit down-counters in Intel's programmable
interval timer 8253 (A22). Each timer/counter is functionally configured via
software to implement one mode of operation such as an event counter, a rate
generatbr or a one-shot. Under the control of the software monitor, the 8085A
sends out a set of control words to initialize each counter with the desired
mode and quantity information. Once initiated to perform its assigned timing
task, each timer counts its input count pulses and provides either a square
wave or pulse when terminal count (TC) is reached. The initiation of counting
with an 8155 timer is accomplished via software only, while the counting of each
8253 counter is initiated by software and/or hardware. Figure 2-16 shows an
added control line, GATE, to an 8253 counter compared to the 8155 counter. For
most of the modes of operations, counting is disabled/enabled by the logic
low/high on the GATE line. For the rest of the modes, counting is initiated by

the rising edge of the GATE line.

48

'I.. l N
Y L, ! / L P A

CLK : B R il (c
GATE
Counter (16-bit) Contr°1jﬂﬂﬂ_’ Counter (14-bit) Control‘2£255>00t
Logic Logic
" (a) An 8253 Counter. (b) The 8155 Counter.
. Figure 2-16. 8155 and 8253 typical counters

Table 2-23 summarizes the functional assignment to each timer and its mode
of operation as defined by Intel's data sheets on the 8155 and 8253 chips. With
reference to Figure 2-15, it is shown that the clock input to counter 0 and the
data acquisition control can be selected to be either a 2kHz clock or 1.536MHz
clock by one of the control lines from the mode control lines defined as
(LO/HI) RF line. The (LO/HI) RF signal when it is pulled high selects the
1.536MHz and selects the 2kHz clock when it is pulled down. The 2kHz clock is
generated using the 8155 timer by dividing the system clock by the count 1536.

The 1.536MHz is derived from the system clock by using a D-flip-flop 74LS74 (All)

configured as a divide-by-2 counter as shown in Figure 2-15.

DEVICE COUNTER OPERATIONAL FUNCTION
MODE
8155 (A9) 14-bit counter Square-wave | divides the input clock of 3.072
output MHz and produces an output of 2kHz.
8253 (A21)! Counter O (16-bit) | Mode 4 programmed as an event timer that

measures the sampling time window.

Counter 1 (16-bit) | Mode 5 programmed as an event counter that
counts the number of samples collected.

Counter 2 (16-bit) | —==--- Spare

Table 2-23. PCU-85 TIMERS/COUNTERS Functional Organization.

49

Communication between the 8155 timer and the CKU is similar to the 8155
1/0 ports. The lower 3 bits of the Address Bus are used to select the timer,
in addition to the control signals WR/, RD/ and CS/. The command/status regi-

ster is used for the timer as well as for the I/0 ports.

The 8253 is internally structured as three independent 16-bit counters
and a control word register. Each counter consists of a single pre-settable,
down-counter with logic control for independent operation. Counting in either
binary or BCD, the timing input gate and output are configured by the infor-
mation to be stored in the control word register. There are five operational
modes--defined in the 8253 data sheet-~that each counter can be programmed to

perform for the required timing tasks.

Addressing of each timer using Address and Control Buses is summarized

in Tables 2-21(a) and (c¢).

2.7 Data Acquisition Control

Although initiated by software control, data sampling is accomplished via
hardware control. This control unit is shown in Fiéure 2-17.

Time window count is loaded in COUNTERO of the interval timer, the
8253. Then, the software activates PULSEO/which pulses the CLEAR line high
through inverter gate number 6. The CLEAR line resets the data counter A23 and
A24 in Figure 2-15. When PULSEl/ is pulsed low by software, it sets flip-flop
Fl. Thus pulling the data enables DE line high. This allows data pulses to

pass through gate 5 to the input of the data counter to be counted.

50

1. \
- ‘,.J__,J“ ’ .(- R i

Y

6 ~® CLEAR

N~
le~°

74L508
RST BUF/ ——of ™\
4
puLsEo) —-/ 1 p 4 {>.,__‘ J . C
B To counter
74LS10 74LS10
Data from QMF
74LS510 =
RST 7.5 o—{z_—:f:
LK C
oUT0 oo 74LS10 F2 PULSE1/
PR —dq
LGS
OFLAG P - -
CLK » :

Figure 2-17. Data Acquision Control

At the same instant PULSEl/ sets flip-flop F2. The output Q of F2, being
connected to GATEO of COUNTERO, enables COUNTERO to decrement the count it holds
in its register at the rate of its clock input CLKO. On terminal count, the
output OUTO is pulsed low for one input clock period. This activates the three
inputs NAND gates numbers 1 and 2 by pulsing their respective outputs high.

NAND gate 1 clears flip-flops Fl and F2 via inverter gate 7. Therefore Fl pulls
DE line low and stops any more data pulses to pass through gate 5. Also, F2
inhibits COUNTERO from counting by pulling GATEO input low. NAND gate 2

activates interrupt line RST 7.5 requesting the 8085A service.

If the data count becomes half full before the time window count is decre-
mented to zero, the overflow flag OFLAG goes high. Syncronized by the clock
CLK, the output of NAND 3 is pulsed low for a period of one positive-edge clock
pulse. Thus activating gates 1 and 2 which in turn inhibit dat pulse counting

and time window counting, and activates the RST 7.5 interrupt line.

On power-up, RST BUF/ goes low and resets the data acquisition control.

51

2.8 RST 6.5

COUNTERL contains a count which is proportional to the size of the memory
buffer. Each data sampling requires four bytes of storage - two bytes for data
count, and the other two bytes for the time window count. Since the size of
the present memory buffer is 512 bytes, then the count to be loaded in COUNTERL
is equal to 128. But, due to internal design of the 8253 the counter operating
in mode 5 counts two more extra clock pulses. Therefore, the actual count,
defined as memory buffer count, to be loaded in COUNTER; is equal to 126,

PULSE2/, being used as a clock input to COUNTERL, is used to decrement
the memory buffer count after each data sampling. Therefore, whenever RST 7.5
interrupt routine is executed, the monitor pulses PULSE2/ low. When terminal
count is reached, OUT1 will go low for one clock period. Being connected to
PR input of flip flop F3 in Figure 2-18, OUT1 will set the Q output and reset
the Q/ output of F3. RST 6.5 interrupt is activated by level high of the out-
put Q. The B8085A responds v..~icing RST 6.5 interrupt routine. The routine
will activate PULSE3/ which will reset F3. Therefore, RST 6.5 goes léw and at
the same time GATEl will go high. The rising edge of GATEl will retrigger
COUNTER1 by reloading it with the same memory buffer count, and re-initiating

the counting procedure.

+5.V

2.2K {___¢<

e T G,

F3

GATEl<4— q

Q » RST 6.5

=

Figure 2~18. RST 6.5 Interrupt Control Logic.

Similar to all circuits in PCU-85 system, RST 6.5 interrup control logic

can be reset by activating RST BUF/.

52

CHAPTER 3
SOFTWARE DESIGN

The PCU-85 software system performs the actual tasks required upon

the quadrupole mass spectrometer filter, be it a control function or data
acquisition. In the first section, these tasks and their operating para-
1 ‘ . meters are described in some detail. Then, the remainder of the chapter
b discusses the following items:

1. The PCU-85 software structure used to implement the operational tasks
of the QMF.

2. Software analysis and design using Intel's 8085A Assembly Mnemonics.

3.1 Control Operation

With reference to Figure 1-1 and 1-2, a typical voltage sweep to be
generated is shown in Figure 3-1. This voltage sweep and the ratio control
are used to amplitude modulate the rf signal, the result is applied to the

mass spectrometer rods.
4 voltage Amplitude = U

tl tz t3

-
b 4

Figure 3-1. Voltage Sweep Versus Time.
53

As seen from the graph, there are three modes of operations;

(1) Total Ion Mode

In this mode, the QMF becomes a high-pass filter where only ions with

mass greater than the cutoff value Mo pass through the quadrupole. During

this mode, the voltage sweep is usually held constant at a voltage U1 in a

time interval L, -t In addition, the DC excitation voltage is reduced

1.
to zero. In some cases, the voltage sweep is allowed to vary and accordingly

the lower cutoff mass Mo is varied with the corresponding ramp voltage.

(2) Jump Mode

A jump in the voltage sweep from U1 to U2 at time C2 allows the QMF to
skip scanning masses that are selectable by the voltages that lie between
Ul and Uz.
(3) Scan Mode

To scan masses of all ions lying in a mass domain Mz and M3 selectable
by the voltages U2 and U3, it is required to generate a ramp sweep of slope
equal to (U3 - Uz)/(t3 - tZ). Simultaneously, the ratio U/V is kept constant
to keep the filtered mass domain in the siability region of the QMF.

The ramp is generated using step-wise approximation of amplitude AU
in a time interval At. The start of each step is called a steppoint.

The above operations are separated by breakpoints. In Figure 3-1, these

points are located at tl, t, and t3. At these breakpoints, the ration con-

2
trol, status control and sweep control are updated according to predetermined
binary words, defined as control parameters, that are stored in memory.

The present system uses Intel's 2716 EPROM as storage elements for these

parameters.

3.2 Data Acquisition

At the onset of each breakpoint and each steppoint, just after updating

54

"module, known as a task, is a separate routine assigned to an event. Tasks

the control parameters, the pulse counter in iigure 2-15 1s commanded to
start counting the incoming data pulses. At the same instant, the time
interval window count (At) in COUNTERQ is allowed to decrement. When over-
flow of the pulse count occurs, or when the time interval At is decremented
to zero, pulse counting is automatically terminated. The pulse count and
the actual time interval count are transferred into buffer memory for
temporary storage. Then the next breakpoint or steppoint is initiated.
Since the pulse counter is 16-bit wide, then for a maximum data pulse
rate of 3MHz, the minimum expected window time At, during which half of the
maximum count is accumulated, is equal to 215 x (10-6/3) = 110 msec. An
upper limit for At is estimated to be a 100 sec, which corresponds to data
pulse rate of 327Hz. COUNTERO is used to cover the range values of At,
by decrementing the time interval count lcaded in its register at an optimum

clock rate generated at the output of the 8155 timer.

3.3 System Overview

The PCU-85 software structure can bé described as a real-time multi-
tasking system. It schedules, controls and responds to asynchronous events
occuring concurrently.. In contrast to sequential operation, this occurrence
of events 1s a distinguishing characteristic of real-time systems. Synchron-
ization and prioritization of events is accomplished through hardware
interrupts assigned to each event, and through software programming.

The PCU-85 software is block-structured into modular routines. Each

share resources such as memory devices and software subroutines. Therefore,

information exchange is possible among tasks via these resources. Most of
these tasks are event driven initiated by a hardware interrupt activation.

A flow diagram of the software system is given in Figure 3-2. Upon

55

Power Up

Reset

Initialize System

I

Initiate Operation

Idle Loop }

Wait for interrupt

Response?

[TRAP

Task 1 Task 2 Task 3 Task 4 ceses Task 12

%6]
Figure 3-2. Flow Diagram of the PCU-85 Software System. '

reset, the software and hardware systems are initialized to a predetermined

state. After initiating control operation, the 8085A enters into a timed
idle loop. In this state, the microprocessor executes the No Operation
(NOP) instruction repeatedly until it receives a request on at least one of
its interrupt lines. Accordingly, the corresponding task takes control of
the processor when no other tasks of higher priority are ready to execute.
This task performs some action upon the request and then simply resumes
waiting via the idle loop until the next request is received. Task waiting
period is scheduled according to COUNTERO time interval and/or the occur-
rence of an event.

The PCU-85 uses the following three tasks for its programmed operation:
1. Task 2

Task 2 is the executive routine that accomplishes the control operations
described in sections 3.1 and 3.2. It initiates the function by sending
control parameters to the QMF input ports.and then surrenders control of
the processor to the idle loop. At this time, one of the other tasks can
execute its function when it is activated. Task 2 continues to wait until
it receives a response from the QMF ports. Being the highest priority, it
resumes control of the 8085A by storing the sampled data into buffer memory,
and then it initiates the control functions of the next steppoint.
2. Task 3

Task 3 will be ready to execute whenever the memory buffer becomes
full. If no higher priority task is currently running, Task 3 takes control
of the processor. It arranges the data in memory into a file with appropri-
ate headings and displays it on the CRT screen. Then, Task 3 completes its
functions by adjusting memory pointers and the current breakpoint pointer,

and by initiating control function of the QMF at the start of the interrupted

57

a—-— -

breakpoint. This task continues to wait untii.the n:xt response is acti-
vated. The second priority level is assigned to Task 3.
3. Task 4 .

The operator can interrupt the current control operations of the -
PCU-85 by activating Task 4. This executive allows the operator to adjust
memory pointers or control parameters in the scratch pad. In addition,
control operations of the current block of parameters can be altered to
another block of parameters in the same set of blocks or repertoire. Task 4
enters the waiting state whenever one of its commands is executed. The
third priority level of interrupts is assigned to Task 4.

The four restart interrupts can be increased up to 12 interrupt levels
by using the vectored interrupt line INT and a single AM 9519 Universal
Interrupt controller device manufactured by Advanced Micro Devices. The
AM 9519 manages the masking, priority resolutlon and vectoring up to eight
interrupts through its eight interrupt request lines. Each of the added
eight hardware interrupt levels has a set of priorities, of which one must
be assigned to the task that services the interrupt. The highest priority
interrupt level, TRAP, is assigned to Task 1. Task 1 is reserved for

gervicing catastrophic errors such as power failure or bus error.

3.4 Memory Organization

A map of memory addresses with their corresponding functional blocks §
that are utilized by the PCU~85 software monitor is shown in Figure 3-3.
The memory map is divided into two parts. The first part of the map is . !
occupied by EPROMs for monitor program and control parameters storage. RAM

for scratch~pad and data accumulation occupies the second part, with memory-

mapped 1/0 section in between. Unassigned sections are left for memory -

expansion to be occupied by EPROMs and/or RAM as needed. The structure of

58

each utilized memory block is discussed in this section.

Expansion

Buffer Memory

2400
23FF
Memory mapped I/0 devices
2100
20FF
| | Scratch pad
1 I 2000
1FFF E
' Expansion
1000
: OFFF
; Library
; (control parameters)
f 0800
! Q7FF
PCU Monitor
) 0000

Figure 3-3. PCU-85 Memory Map.

3.4.1. Monitor: The general data structure of the PCU-85 monitor is dis-

cussed in the previous section 3.3,

3.4.2. lLibrary: A Library is a collection of pointers and control

59

T - | |

parameters organized in an orderly structure. Each pu:nter is a 16-bit
address that belongs to one of four hierarchy levels of organization. These |
levels are:

1. Archive: an archive is a collection of repertoire pointers
(REP) that must be stored in consecutive memory locationms.
Each repertoire pointer REP (i) identifies a specific block
of pointers.

2. Repertoire: a repertoire is a collection of program pointers
(PROG) that are stored in consecutive memory locations. Each i
program pointer PROG (j) identifies a specific block of :
pointers.

3. Program: a program is a collection of KBLOK pointers that
are stored in consecutive memory locations. Each KBLOK pointer
KBLOCK (L) identifies a specific block of control parameters.

4, KBLOK: a KBLOK is a collection of K numbers or control
parameters that are stored in consecutive memory locations.
These parameters identify a breakpoint with the associated :
mode and status operation of the QMF and the sampling time oo
interval for data pulse counting.

Each hierarchy of pointers can be of arbitrary length, arbitrary sequence,

and arbitrary location in the memory space. Two bytes of zeros at the end

of each of the first three hierarchies marks the end of list of pointers for
that hierarchy. When this condition is detected, the monitor starts pro-
cessing with a pointer from the next higher hierarchy level. If the end of
the archive is reached, the monitor will repeat processing starting with the

first pointer in the archive. A typical block structure of these blocks

i
i
and interconnection is illustrated in Figure 3-4. i
Hierarchy of pointers follows a tree-~type of data structure. The :’
branches of this tree are pointers, and its roots are control parameters.
Figure 3-6 shows a simple library configured in a tree structure.

3.4.3. Scratch-pad: Scratch pad is an area of memory where the micro-

processor stores intermediate computations, current pointers, stack, current

breakpoint control parameters, and other relevant information. Figure 3-5

(1) Mo19d

Teal23uy
awyl BurTdues

juamaidur juroddoag

aNd Jutodyeaag

3aelg jurodyieaag

(OIA .S

Ao

8+ (1) M0

9+ (1) A0TIA

9+ (1) M019A

¢+H(DA0TEN

(1) do194

() wealoag

aojugod (T)NOTEA

2ojurod (Z)MOTgX

xazutod (1)20719M

*s193UTO0d No0ld Jo AYoawvisalH

»+()oouda

+(D)ooud

(£)yo0d4d

*-¢ 9an31g

(1) ®arozaxaday

aajurod (f)90d4

aa3jurod (Z)950dd

xa3utod (1)90¥d

%+(T)dTd

Z+(T)dqy

(1) daxy

BATYOLY

193urod (T)dIy

1ajutod (Z)4IY |

x3jutod (1)d2¥

61

2000 Ratio
2001 | Mode)
2002 BKPOINT (AMU) Start]
Low Byte —
2003 BKPOINT (AMU) Start
High Byte -
current 2004 BKPOINT (AMU) End
'K! Low Byte
1 block 2005 BKPOINT (AMU) End
storage High Byte
2006 BKPOINT (AMU) Increment
° Low Byte
2007 BKPOINT (AMU) Increment
High Byte L
2008 Sampling Time Interval
Low Byte
i 2009 Sampling Time Interval
High Byte f
200A !
2008 |
200C
200D
200E
v 200F |
N
i
i
Stack
i
%
&/ 20a1

T

Save
locations
for

CPU
register

20B1
2082

E Re-ister

D Re :ister

20B3
20B4
20B5
20B6
2087
20B8
20B9
20BA
20BB
208BC
20BD

C Register

B Register

FLAGS

A Register

L Regzister

H Register

Interrupt Mask

PC Low Byte

PC High Byte

SP Low Byte

L SP High Byte

13 bytes
reserved
for CPU

registers

20BE
20BF

20DF
20EQ

TEMP Low Byte

TEMP High Byte

-
.
-

20E1

20E2
20E3
20E4
20E5
20E6
20E7
20E8
20E9
20EA
20EB
20EC
20ED
20EE
20EF
20F0
20F1
20F2
20F3
20F4
20F5
20r6
20F7
20F8
20F9
20FA
20r8
20FC
20FD
20FE
20FF

Figure 3-5.. Memory Map for the

62

64 bytes
of current
storage of
data or
address
for the
monitor

File Number

BKPOINT end buffer storage pointer low

BKPOINT end buffer storage pointer high

current buffer storage pointer low

current buffer storage pointer high

current K" block pointer low

current "K" block pointer high

current program pointer low

current program pointer high

current repetoire pointer low

current repetoire pointer high

Scratch-Pad.

| Y

shows a memory map where 256 bytes of RAM is éssigned to the scratch pad.
The first 10 bytes are used for storage of current breakpoint control
parameters. Whenever a new breakpoint is to be initiatéﬁ, control para-
meters are transferred from the library to the scratch pad. Any task can 1
easily refer to these memory locations and use the parameters for its
assigned function.
The second part of the scratch pad is assigned to the CPU stack. In-
formation, such as the content of the processor's registers and the program
counter, is pushed down in the stack on a Last-In-First-Out (LIFO) basis.
The stack is usually used for subroutine linkage, interrupts and temporary
data storage.
The last part of the scratch pad is reserved for current pointer storage
or temporary data storage. The topmost locations are used to store current
repertoire, program and KBLOK pointers. The next two pointers are associated
with buffer memory. The first one is buffer storage pointer which indicates
the first empty location in buffer memory. The second one is breakpoint 4
end buffer pointer, which the address of the last stored data from the :
previous breakpoint. If the buffer memory becomes full before the current
breakpoint is completed, then data transferred from the buffer memory to the
CRT will be up to and including the data addressed by the breakpoint end buf-
fer pointer disregarding the data collected in the present breakpoint. When
the transfer is completed, control operaticn will be continued from the be-
ginning of the current breakpoint. i
Memory space is provided for future expansion of any part in the scratch
pad.

3.4.4, Buffer Memory . I

Buffer memory is used to compensate for a difference in the rate of

63

ARCHIVE A Repertoire(l) : Repertoire(2) 1
REPERTOIRE PROG(1) PROG(2) PROG(1) PROG(2)

i KBLOK KBLOK
PROGRAM KBLOK (1) KBLOK (2){KBLOK (1) (2) KBLOK(1) (2) KBLOK(1) LOK(2)

; Control - 7 l 11 | V i l { ll !
{ Parameters { i '
Figure 36. A Tree Structure for a Simple Library.

fiow of information or the time occurrence of events when transferring
information from one device to another.

Data, composed of pulse count and actual time interval count, are
temporarily assembled in buffer memory everytime Task 2 is activated. Trans-
fer of the buffered data from memory to another device such as the CRT screen

occurs whenever a sufficient number of data is collected.

p—— 16 bit ———

2400 Pulse Count
2402 Time Interval Count

Pulse Count
BKPOINT End Buffer Time Interval Count
Pointer .

Time Interval Count
Buffer Storage Empty Location
Pointer

2BFF

Figure 3~7. Menory Map for Buffer Memory. {

64

3.5 Initialization

Upon power—~up or following each reset signal activation, the hardware
and the software systems are initialized to a predetermined state. The
initialization routine executes this task by performing the following
functions:

1. Disables all interrupts and initializes the stack pointer.

2. Initializes system ports and counters to the desired state

required by the design and dictated by an initializatijon table.
The table contains control words that control the operational

mode of peripheral devices.

3. 1Initializes pointers and scratch pad to the organization described
in the previous section.

4. Starts the first control operation of the QMF, enables the
interrupts system and then enters the idle loop.

Due to the structure of the 8085A, the lower portion of memory from 0
to 38 hexadecimal are reserved for interrupt vectoring and software restart
entry points. A branch instruction is written in each one of these. entry
points, to direct program execution to the associated service routines that
are found in higher portion of memory. Restart zero (RST 0) is used as the
entry point to the initialization routine. After initialization of the
stack pointer, a branch instruction is inserted for program execution to
jump to the main body of the initialization routine (INITZ). Figure 3-8
shows a flowchart of the logic operation of the initialization routine.

The assembly listing of the routine can be found in Appendix A.

3.6 Task 2 (RST. 7.5 Interrupt)

3.6.1. Data Fetch
Whenever RST 7.5 interrupt signal is activated, Task 2 routine is
invoked to commence processing. Execution starts with disabling all future

and pending interrupts as shown in the flowchart diagram of Figure 3-10.

65

))
Ve
daieee o d A l a - N

" 4

A

1 - Disable Interrupts
2 - Initialize Stack Pointer

1 - Get Pointer to Initialization Table
2 - Initialize B to the number of parameters
(NRUN) in Table

1 _

RESET

RST O

| INITZ

Q-

Get Device Pointer From Table

Get Device Control Word From Table
Output Control Word to Device
Increment Table Pointer

Decrement NRUN

v~ -
1

INITZ5

NRUN = 07
YES

1 - Clear Pulse Counter and Initialize COUNTER1
2 ~ Initialize Pointers and Interrupts

3 - Start Control Operation of QMF by

calling "“EXITER" Routine
4 - Enable Interrupts
Wait for Interrupt
(Idle Loop)
Figure 3-8. Flow-Chart of Initialization Routine.

66 -

-

& time

Figure 3-9. Voltage Sweep Slope Error

This is essential for the proper control of the QMF operation. Any inter-
ruption of Task 2 will add time delay to the execution time of Task 2
routine. In turn, the time invertal At will be increased and thus decreasing
the slope of the voltage sweep and causing different masses to be scanned
instead of those desired by the programmer.

Figure 3-9 shows an example of an error introduced to the voltage
sweep slope when interrupts are not disabled, and another interrupt has
occurred during the execution of Task 2. RST 7.5 interrupt occurs at to,
and its service routine requirgs Atz(us) to complete the task assigned to
it. An interrupt for another task might occur at time t2+6 during Atz.
Task 2 will be suspended and the other task takes over the control of the
microprocessor and starts executing. Once it completes its functions after
At3(us) then Task 2 is allowed to resume execution to completion. The
apparent time of execution of Task 2 is (At2 + At3)(us). One of the control

parameters that is updated at the end of Task 2 execution is voltage sweep

67

e
" RST 7.5 Entry Point
- (Task 2)

Disable Interrupts and Save CPU Registers.

Get Pulse Count and Store in Buffer Memory DFETCH
Get Time Interval count.

Check if Overflow of Pulse Count Occurred.

NO
Overflow?
YES

Calculate the Actual Time Interval Count

£HWN -
L I S |

i

1l - gg;ié—Time Interval Count in Buffer Memory.
2 - Clear Pulse Counter (ACC)

/A CONTROL
NO YES
> 1
w .
INCR

DFETCH5

1 - Add AMU Increment to Current AMU 1 - Get Next Breakpoint, Output its Para-
2 - Output Results and Other Parameters meters to QMF and start sampling
to QMF and start sampling. 2 - Update Breakpoint Data Storage Pointer

(BDPOINT) with the value of Current Data
Storage Pointer (CDPOINT)

1 - Decrement Data Storage Counter (COUNTERL1)
2 - Restore CPU Registers and Enable Interrupts RESTORE

Figure 3-10. Flow-Chart of Task 2 (RST 7.5 Interrupt) routine

68

o \
")/ “ 2 A‘ - b i

|
|
t
|
l

parameter. Because of At3 delay time the voltage sweep is incremented at
point 3 instead of its assigned place in time ac point ?. As a result,
Line B will be controlling the QMF instead of the calculated one Line A.
To avoid this problem, one of the following solutions should be exercised:

1. Disable interrupts at the start of Task 2 routine and enable
interrupts at the end of the routine.

2. If TRAP interrupt line is to be used to indicate power failure,
all interrupts should be masked at the start of Task 2 routine and
then unmask them at the end of the routine. Since TRAP is un-
maskable interrupt, it 1s acknowledged when it is activated.

In this prototype, TRAP is not used, therefore disabling interrupts

is the proper choice.

Because of the reasons given above, the highest priority interrupt
used is assigned to Task 2. At the same time, the execution time At2 of
Task 2 is optimized to the smallest value possible. The maximum value of
Atz, when a new breakpoint is initiated, is calculated to be 362.2 us.

Task 2 continues operation by saving the 8085A registers, on the stack,
and then fetches the data accumulated in the Pulse Counter and store it in
buffer memory. The most significant bit of the pulse count is tested. If
it is set, overflow has occurred before the time interval counter is decre-
mented to zero. Task 2 subtracts the remainder of the time count from the
interval time count found in the scratch pad and stores the result as the
actual time count into buffer memory. If the most significant bit of the
pulse count is found to be zero, then no overflow has occurred, and Task 2
stores the time inverval count in buffer memory with no adjustment of its
value. To prepare for the next steppoint control, the pulse counter is
cleared to zero.

3.6.2. Control

Task 2 starts control operation by comparing the current voltage sweep

69

amplitude (current AMU) with the voltage sweeé amplitude (End AMU) that
marks the end of the current breakpoint. If it is larger, the next break-
point's parameters are transferred to the scratch pad aA& are used to
control the operation of the QMF. Otherwise, the current AMU is incremented
by the value of the AMU increment. The resultant value and other para-
meters of the current breakpoint are used to control the operation of the
QMF. 1In both cases, steppoint control is initiated just after the required
parameters are output to the QMF ports.

At the beginning of each new breakpoint, breakpoint data storage
pointer (BDPOINT) is updated with the value of the current data storage
pointer (CDPOINT). The first address points to the last data collected
in the previous breakpoint, while the second address points to the last data
collected in the current breakpoint. Therefore, BDPOINT always points to
the end of valid data buffer to be transferred. When the data buffer memory
becomes full during the current breakpoint, only the data collected up to the
start of the current breakpoint will be transferred to the CRT. Then con-
trol operation is resumed from the beginning of the current breakpoint.

The above procedure is essential to insure that the data collected during
a breakpoint is done within the time period allowed to it. Otherwise, errors
are introduced in the interpretation of the data result.

Task 2 sends PULSE2 to decrement the count held in (COUNTER1) indi-

cating that four bytes of data were added to the memory buffer area.

3.7 EXITER Subroutine

EXITER subroutine is the library manager which when called by other
routines provides the scratch pad, and the QMF ports with a specified

breakpoint or steppoint parameters. It also initiates time interval counting

and data sampling.

70

3.7.1. Library Management

Library management is processed through three consecutive routines:
Get Repertoire (GREP), Get Program (GPROG) and Get KBLOK (GKBLOK). Each
one of these routines follows the same data structure, and operates on one
hierarchy level pointer to obtain the next lower level pointer. Then it
stores both pointers in scratch pad memory. As it is shown in Figure 3-11,
the EXITER obtains the archive pointer (the first repertoire pointer) from
memory location 800 hexadecimal and makes it available to be used by GREP
via the scratch pad.

GREP loads its level pointer which is the repertoire pointer from
scratch pad into HL registers. And it uses the pointer to obtain the next
lower pointer which is the program pointer via LDE subroutine. If the
program pointer is equal to zero, which is the mark for the end of the level
pointers list, then LDE sets the Z-flag for GREP to use as a conditional
branch to the start of the EXITER, and repeates processing the archive.

Similarly GPROG operates on program pointer to obtain a KBLOK pointer.
If the latter is zero, a branch is made to GREP for processing a repertoire
in sequence. Otherwise both pointers, program pointer and KBLOK pointer,
are stored in scratch pad. Following GPROG routine is GKBLOK routine which
operates on KBLOK pointer to get a breakpoint pointer from the library.

The latter is tested for zero which is the conditional jump to GPROG. When
the condition is false, GKBLOK stores its level pointer into scratch pac
and relinquishes the 8085A control to XFER routine.

3.7.2. Control

As shown in Figure 3-12, EXITER subroutine uses the control routines,
transfer parameter (XFER) routine and output parameter (OUTPAR) routine.

XFER routine transfers all ten parameters pointed to by the BKPOINT

71

T W

i

\Get address of first repetoire and store in scratch-pad EXITER i

i

!

-

L 1 - Load repetoire pointer, REP (i), from scratch~pad into HL :
2 - Get program pointer adcress:d by REP (i), and increment REP (i)

XES

rogram Pointer = zero

NO

1 - Store repetoire pointer, REP (i) + 2, into scratch-padA

2 - Store program pointer, PROG (j), into scratch-pad

‘I ~ Load program pointer, PROG (j), from scratch-~pad into HL
|2 - Get KBLOK pointer addressed by PROG (j), and increment PROG (j) GPROG

YES

KBLOK pointer = zerol>

1 - Store program pointer, PROG (j) + 2, into scratch-pad

2 - Store KBLOK pointer, KBLOK (L), into scratch-pad

Q

1 - Load KBLOK pointer, KBLOK (L), from scratch-pad into HL GKBLO}
2 - Get breakpoint pointer addressed by KBLOK (L), and increment KBLOK (L)

YES

CEEEEEEEEEE/;;incer = zero?

No - ——— e
lStore KBLOK pointer, KBLOK (L) + 2, into scratch-pad

TO XFER ROUTINE

Figure 3 - 11. Flow-Chart diagram of EXITER library management routines.

727

Using BKPOINT pointer in HL, transfer all K parameters XFER
from library to scratch-pad. Number of parameters K
is stored in register B. In this version K = 10

Output Ratio and Status parameters from scratch-pad OUTPAR
to QMF designated ports (RSPORT)

1 - Output the rest of the parameters, time interval
Count and current AMU word to the designated QMF
ports.,

2 - Initiate time counting and data sampling by
activating PULSEl line.

OUTPARS

Figure 3 - 12, Flow-Chart diagram of EXITER control routines.

73

" o
ORI ,‘,_1.: ala

““_________;::::E!!!!!!!!!!!!!!!!!!!!!E!I!IlIlllllllllllllllllllllltl

pointer in HL registers from the library to the star: oI the scratch pad.
This is accomplished to provide the capability for other routines to refer-
ence these parameters and to change their values.

OUTPAR routine updates the QMF designated ports with the control para-
meters found in the scratch pad, whenever a new breakpoint is to be initiated.
Since the status and ratio control parameters remain unchanged during a
breakpoint, OUTPARS routine which outputs the rest of the parameters to the
OMF ports, is usually called by Task 2 whenever a new steppoint is to be
initiated. At the end of the routine OUTPAR, and therefore OUTPARS acti-
vates PULSEl/line. This allows data pulses to pe accumulated in the Pulse
Counter, and at the same time, the time interval count to start decrementing.
When the memory buffer area becomes full, the count is decremented to zero
which will activate RST 6.5 interrupt line. After interrupts are enabled
by software, then Task 3 routine starts transferring data from buffer area
to CRT screen.

Task 2 routine terminates its functions by restoring the 3085A
registers, enabling interrupts and relinquishing the control of the 8085
to the idle loop.

3.7.3. Task 2 Execution Time

Execution time for Task 2, At2, is defined to be the time the routine
starts execution until sampling pulse (PULSEL/) is activated for the new
steppoint. The value of At2 is calculated by adding all the clock cycles
required to execute each instruction in the Task 2 routine, and multiplying
the results by the clock period. When a new steppoint is initiated At2 =
541 (clock cycles) X 0.326 (us/clock cycle) = 176.366 us. This value is
increased to 362.2 Asec. if a new breakpoint is initiated. Thus At2 is a

var.able quantity depending on the library level to which Task 2 has reached.

74

3.8 Task 3 (RST 6.5 Interrupts)

Task 3 routine transfers a block of data from memory to CRT screen
at a baud rate of 9600. A file header is attached to the ~tart of the block
for identification of data. Before surrendering control of the processor
to the idle loop, the routine initiates control operation of the QMF from
the beginning of the current breakpoint. Figure 3-13 shows the display
format that appears on the screen.

This Is The PCU First Run.

Date: 3/28/1978
File#: (value)

Repertoire Program KBLOK

(value) (value) (value)

Data Time Data Time Data Time Data Time
(value) (value) (value)

(value) (value) etc.

(value) (value) etc.

Figure 3-13. File Header and Block of Data Display Format.

3.8.1. Transfer

As shown in Figure 3-14, TRANX routine after disabling interrupts it
displays file header using MSGOUT and an EPROM-based table of the required
file characters. At the appropriate places, it inserts the value of the
file number for that block of data, and the three level pointers, repertoire,
program and KBLOK pointers. kLkach one of these level pointers addresses its
next operational level. Therefore, the data displayed on CRT are the results
of processing the parameters pointed to in the library by the last block
level pointers and up to the present block level pointers.

Data are displayed columnwise in hexadecimal format such that alternate
columns represent the same type of data. The first alternate columns repre-

sent the actual time interval count. Each row shows data collected in

75.-

o et Skt s, +

‘;;;;;;;7 AST 6.5 Entry Point (TASK3)

Disable interrupts. TRANX

|
!
@

L

Output file header im a displayable
format to CRT.

Output the three level pointers.

w
|

S
I

Transfer data from buffer memory to CRT.

i

Clear pulse data counter. INIT

Initialize buffer memory pointers.

Initialize data storage counter (COUNTERL)

Bk
& W P
1

i

Reset RST 7.5 internal request flip flop.

L

Initiate control operation of the QMF from

the beginning of the current breakpoint.

Figure 3-14. Flow Diagram of Task 3 Routine.

sequential order of first-in-first-out (FIFO)'structure.

The size of the block of data is determined by the size of the buffer
memory. The last data to be displayed on the CRT is bou;ded by the break-
point data storage pointer (BDPOINT) which points to the first data not to
be transferred. Thus BDPOINT helps in terminating the display of data on
the CRT.

3.8.2. Control

To resume QMF control operation and data acquisition INIT routine
executes the following steps:

1. Clear the data pulse counter by activating PULSEO/line.

2. Pull down PULSE3/line to reset RST 6.5 interrupt request flip flop
and to initiate COUNTERl counting operation.

3. Initialize buffer memory pointers to their values.
4. Reset RST 7.5 internal request flip flop.

5. Initiate the start of the current breakpoint control by calling
GKBLOK routine.

6. Enable interrupts and relinquish control of the processor to
the idle loop.

3.9 Programming the PCU-85

The number of breakpoints and level pointers required for a balloon
flight are limited only by the size of the memory assigned to the library.
The primary sources of this memory are Intel 2716 EPROMS. Although the
starting address is at 800 hexadecimal, the rest of the library can be
virtually anywhere in the memory space available.

Programming the library involves the {ollowing steps:

1. Once the number of breakpoints are determined and assigned to

certain memory locations, then the rest of the available memory
space 1s distributed amung the three hierarchy level pointers.

This process 1s termed space management.

2. Calculate the hexadecimal values of all breakpoint parameters
that are required to generate the desired control signals.

3. Using the development software monitor DSM-85 and a CRT, the
operator can program the library in an Intel 2716 EPROM.

An example memory space distribution and parameter calculatiomn is
given below.

3.9.1. Space Management

A proposed memory space organization for a hundred breakpoints library
is given in Table 3-1. A breakpoint has processing capabilities of more
than just one AMU number. Therefore, one Intel 2716 EPROM may be sufficient
for the present balloon borne ion mass spectrometer (BBIMS) specification.

Any number of pointers can be assigned to one level as long as a zero
is inserted in the last pointer memory location to mark the end of that level.

Breakpoint parameters could be allocated to the higher memory space in
the EPROM, and the higher hierarchy levels could be allocated to the lower
memory space. This memory space allocation provides a unified approach to

library construction for debugging and ease of referencing only.

Number of | Number of Bytes | Number of Pointers
Level levels in each level in each level Total Bytes
Breakpoint 100 10 None 1000
KBLOK i5 50 24 750
Program 12 22 10 264
Repertoire 1 13 12 26
Archive 1 1 1 2
Tota% bytes 2042
required
Total bytes
available 2048

Table 3-1. Memory Space Distribution for Intel 2716 EPROM-based Library.

3.9.2. Parameters Calculations

It is easy to construct tables for each control parameter in hexadecimal

numerals and their correspounding physical values such as voltage or time.

78

Then for any desired physical value, a hexadecimal number is selected from
the table and is written in an Intel 2716 EPROM.
Table 3-2 gives the hexadecimal values of each time interval count

and its corresponding real time values in microseconds when 1.536 Miz clock

is used, and in milliseconds when 2 kHz clock is used.

Table 3-3 gives the hexadecimal values of each voltage sweep control

i and its corresponding voltage value in volts. This value is dependent on
the DAC being used and the reference voltage VREF applied to it.
Similar tables could be constructed for the rest of the control para-

meters.

Time Interval Count | Time Value (Us) using | Time Value (ms) using
4 (HEX) 0.65 us clock 0.50 ms clock
0000 42598. 40 32768.00
» 0001 0.65 0.50
3 0002 1.30 1.00
FFFF 42597.75 32767.50

Table 3-2. Time Interval Count.

Table 3-3. Voltage Sweep Control.

Voltage Sweep Control Analog Value
(HEX) (volts)
-12
OFFF —VREF(l -2)
. ~-12
0801 —VREF(IIZ +277)
0800 —VREF(l/Z)
-12
O7FF -VREF(I/Z -277)
-12
0001 —VREF(Z)
0000 0

79

3.10 Conclusion

The PCU-85 system was designed and developed for two purposes. The 1
primary target is to control a balloon-borne quadrupole ion mass spectro-
meter (BBQIMS) and to acquire data from the instrument for intermediate
storage in RAM with possible intercommunication between the system and
ground station computer. Due to the lack of a microprocessor development
system at the time, additional hardware components and a development soft-
ware package were added to the system. Therefore, the PCU~835 achieves its
second purpose as a development system. The PCU-85 monitor and diagnostic
routines were developed on the PCU-85.

An advanced version of the PCU-85 is proposed in Figure 3-15. 1In the
new system, the PCU~85A, most of the circuits that are used for development
purposes, such as the Debug Circuit and Advance Status Decoder, are re-
moved. To provide for more processing power and an increase in the capabil-
ity of the PCU~-85A additional I/0 devices and RAM are added.

The RAM is increased to 16K bytes with separate address, data and
control buffers that interface it with the 8085A bus system. This increase
of storage will enable more data to be stored, and at the same time part of
the RAM can be used to store control parameters which are either trans-
mitted from the ground computer or retrieved from a magnetic storage in
the balloon.

The new I/0 devices that are added to the system are:

1. Am 9511 Arithmetic Processing Unit (APU). The Am 9511 APU is an

arithmetic processor that provides fixed and floating point
arithmetic and a variety of floating point trigonometric and
mathematical operations. It will be used to enhance the compu-

tational capability of the 8085A and to provide data processing

80

Address

) System

-

System

Memory

Bus D?.ta & (16K Bytes)
Buffer (14

(Am 91L31B)

-1~ Control

L

_
4\/? V

Memory Mapped i

EPROMS 1/0 Devices |
G » - D 87555-5
TMS 2532 System Prog. Peripheral ;
Interface !
<l Bus
> Buffer <:::i__:> 8255A-5
<:_ ” Prog. Peripheral
-2~ Data Interface

K . Am 9511

Arithmetic Pro-
8155 cessing Unit

Am 9513
System Timing
Controller

Am 9517
Multimode DMA
Controller

Am 9519
Universal Interrupt
Unit

e Ay R Ao it 5 =

Figure 3-15. PCU-85A System.

81

o e ad, k) _L,J"l A(,‘- .

on the balloon. Data processes anticipated ar: division of the
pulse count by the time interval count and smoothing the results;
computation of the balloon altitude and coordinate and some environ-~
mental data such as pressure, humidity and temperature.

Am 9513 System Timing Controller (STC). The Am 9513 STC is an

advanced version of the 8253 Programhable Interval Timer (PIT) with
five independent 16-bit counters. Two of the counters may be used
for time-of-day counters, and the other counter are to be used in
the same manner the counters of the 8253 PIT are used.

Am 9517 Multimode Direct Memory Access (DMA) Controller. The Am 9517

DMA allows external devices, such as the memory mapped I/0 devices,
to directly transfer information to or from the system memory. This
improves system performance. In addition, the 8085A can be doing
control processing since it is isolated from the system memory and
the memory-mapped I/0 devices by system bus buffers one and two.

The system should be designed such that the B085A has a higher
priority than the Am 9517 DMA to access the system bus buffers when
contention arises.

Am 9519 Universal Interrupt Control (UIC). The Am 9519 UIC is

added to enhance the 8085A interrupt handling capability and to
increase the number of tasks to be performed by the PCU-85A system.
Some of the housekeeping functions can be assigned to these
additional tasks. These functions are Digitai~to-Analog, and
Analog~-to-Digital conversions of environmental data (e.g., pressure,
temperature, etc.). Also, a communication link can be assigned to

one of the tasks.

82

Appendix A

Appendix A contains the PCU-85 software assembly
listing. General descriptions of these programs are

found in Chapter 3.

|

83

—_ BCU-B5 SOFTWARE
~ Most of the RESTART entry pcints are used for branching to tieir respactive

interrupt service routines.

- RESET eantry point is reserve. for system imitialization.

— Task 2 routine uses RST 7.5 catry point tor its executiv functions. It

sqpervises control operatior of the QMF and the data a:juisition resulting

from such an operation.

Labels

Address

LIS
Inst

R

Mnemonics

G-
States

.

Comments

0000

F3

DI

RST 0 Entry Point

0001

21

LXI H, SPOINT

Load HL with Stack Pointer

0002

Al

0003

20

0004

F9

SPHL

Load SP withh contents of HL.

00035

C3

IMP INITLZ

Jump to initialization routine.

0006

94

0007

00"

0008

C3

RST 1 Eutry Point

0009

000A

0003

000C

000D

000z

000F

0010

Cc3

IM?

RST 2 Entry Point

0011

0C12

0013

0014

0015

0016

0017

0018

C3

RST 3 Entry Point

0019

001A

0013

001C

001D

001E

001rF

0020

C3

RST 4 Entry Point

0021

0022

0023

0024

C3

P PFR

Trap RST (4.5) Entry Point

0025

Reserved for power failure.

0026

HEX |D8 No. : 85
_zbels Address |Inst|Al6 Mnemonics States. Couments
0027 -
0028 c3 JMP RST 5 Entry Point
0029
002A e N S
) 002B - N
002C c3 IMP MON RST (5.5) Int. Entry Point.
002D BC
002E 00
002F
0030 Cc3 RST 6 Entry Point.
0031
0032
0033
0034 Cc3 JMP TASK2 RST (6.5) Int. Entry Point.
0035 : 48 JMP to data transfer routine,
0036 01
0037
0038 c3 RST (') Entry Point.
0039
003A
003B
_TASK2 003C F3 D1 04 RST (7.5) Int. Entry Point.
003D c5 PUSH B 12 Save 8085 Registers.
, 003E D5 PUSH D 12
003F E5 PUSH H 12
0040 F5 PUSH PSW 12
DFETCH 0041 2A LHLD ACC 16 Get data count and load it into HL.
0042 03
0043 21
0044 EB XCHG 04 Put data coun:z into DE.
0045 2A LHLD CDPOINT 16 Get data pointer in HL.
0046 F8
0047 20
0048 CD CALL SDE 18 Call SDE routine,.
0049 40
- 004A B
004B 7A MOV A, D 4 Move high byte of data count into A.
004C EB XCHG 4 Put data pointer into DE.
004D 2A LHLD TIME 16 Load time interval count into HL.
004E 08
004F 20 N
.| oo0s0 EB XCHG 4 Exchange data contents of HL and DE.
0051 A7 ANA A 4 Check overflow of data count.
0052 F2 JP DFETCH 5 7/10 If not jump to DFETCH 5.
0053 60 If yes. Adjust time interval count.
0054 U L B
0055 Es | [PusH ® i 12 Save DPOINT.
0056 21 LX1 H, TIMPORT 10 Get remainder of time interval count.
0057 "o
0058 21

HEX |D8 No
Labels Address |[Inst|Al6 Mnemonics States C-rxuuents
0059 78 MOV A, E 4 Subtract (T7 ~TiM ;
005A 96 SUB M 7 Results in 8. (actual tine interval)
0058 SF MOV E, A I
] 005¢C 7a 1 [MOvV A, D 1 i
005D 9% SBB M 7
00SE 57 MOV D, A 4
005F E]l POP H 10 Restore the dara pointer.
DFETCH5 0060 cD CALL SDE 18 Store (DE) in location pointed toby HL
0061 A\
0062 02
0063 22 SHLD CD POINT 16 Store curren: data pointer.
0064 ¥8
- 0065 20
006€ D3 OUT PULSEQ 10 Clear data count accumuluator.
‘__ 0067 - 10 *
CONTROL ‘0068 24 LHLD AMU 16 Check 1f sweep reached AMUEND,
0069 02 '
006A <0
0063 EB XCHG 4
006C 24 LHLD AMUEND 16 Load AMUEND into HL,
006D o4 |
006E 20
COMPARE 006F m MOV A, L 4 Check if (L) ~ (DE) 0
0070 93 SUB E 4
0071 7C MOV A, H 4
007298 STB D 4 .)
0073 D2 JNC INCR 7/10 CY = 1 if (DE) 2> (HL)
0074 62 CY = Q 1f (DE) <_ (HL)
0075 (Y]
0076 CD CALL GKBLOK 18 Set_next breckpoinfapd output its
0077 c7 parameters to OMF
0078 C2
0079 2A LHLD CD POINT 16 Update data storage pointer since a
007A F8 new breakpoint is reached.
0078 20
_ 007¢ 22 SHLD BD POINT 16 Ihis pointer will be used in INT 6.5
007D Fb6 service routine.
007E 20
007F C3 JMP RESTORE 10 Restore the 8385 register.
0080 &C
0081 00 A
V-thR 0082 2A LHLD AMUINC 16 GET AMUINC into HL.
0083 cé
0084 20 -
0085 19 DAD D 10 | Add AMUINC, to the curreqt AMU. —
008k 22 SHLD AMU 16 Store in scratch pad.
~ G087 c2
0038 20 .
0089 CDh CALL OUTPARS 15 Output paramgters
008A 27
0088 02

VRS WO

. aeie

HEX |D3 No. 87

Ladels Address |Inst|Alé Maemonics States Ccnments '
RESTORE 008C D3 OUT PULSE2 10 Decrement stcrage indicutor,

008D 82

008E | F1 POP BSW . 10 _ | restore 8085 registers and return

008F | E1 POP H . 10 | to calling program.

0090 | D1 “T'pop D 10 :

0091 Cl POP B 10

0092 FB EL 4

0093 c9 RET 10

A A

After power~up sequence the Moritor jumps to INITZ rint!

This rrutine

inttializes the integrated svsite n (hardware cnd software)., 1.

additicn, it

initiates mass spectrometer control, and dats acquisition,

Finally, it

enters the Idle routine.

HEA WO,
Labels Address [Inst A$§ Mnemonics States, Comments
INITZ 0094 22 SHLD, 20 BC Store SY in suratch pad.
0095 3C
0096 20
0097 21 LXIL, INTABL Load pointer of initialization table.
0098 £0
0099 03
009A 06 MVI B, NRIN Load B with half the si:« of the
0098 0A table.
009C 16 MVl D, 21 Load D wirh most significant bits of
009D 21 memory-~tapped I/0 pointes.
INITZ5 009E 5E MOV E, M In.tialize system ports, by outputting
Q09F 23 INX H contiol words from table.
2030 IE MOV AL M
COAlL 12 STAX T
0NA2 23 INX ©
COAS 05 DCR 8
00AS C2 JNZ, INITZS If table is not exhausted repeat,
QQAS 9. otherwise gontinue. i
00A6 00
Q0A7 D3 IOUT, PULSEQ CLEAR data count accumulator.
; 0048 80 |
00A9 D3 OUT, PULSE3 Initjalize CCUNTERL operation for
00AA 83 RST (6.5) INT.
NITZ10 0048 21 LXI H, SDPOINT Initialize current data storage pointer
00AC 00 to buffer start address.)
Q0AD 24
QOAE 22 SHLD H, CDPOINT Store UL ig scrateh pad,
00AF FE
00BO 290
00381 o MVI, 18 Unmask all Restart interrupts.
00B2 18
00B3 30 SIM
BL3IN QgB4 co CALL EXITER Output OMF parameters.
008, El
N0R6 01
0087 FB EL Fnuble interrupts.
ICLE 00B8 00 NO¥ Get inte idle loop. wait for an
00BJ C2 JMP IDLC interrupt to occur.

AD=AL106 398

UNCLASSIFIED

NORTHEASTERN UNIV BOSTON MASS ELECTRONICS RESEARCH LAS F/8 9/2
PRO.RA“ABLE CONTROL UNIT FOR A BALLOON-BORNE HASS SPECTROMET-ETC(U)
79 V C GEROUSIS 9628-78-6-02
SCIENTIF!C-I AFGL~TR=79=0225

oy - —y T
\
: 89
HEX {D8 Neo. .
Labels Address |Inst{Alé Mnemonics States Comments
00BA 38 ==
00BB 00

S e

| ‘ . .
INT: - RST 6.5 (TASK 3) . - .
RST 6.5 interrupt service routine tr_;r;fers data collected in buf fer memory to CRT
‘terminal. First a header is transferred in front of the data for identification
purposes. Then a block of data, bounded by the buffer start adl ¢ss and the breakpolnt
data storage pointer, is transmitted as ASCII characters to the TIY terminai.

At the end of the transfer, control operation of the QMF is initiated, interrupt

is enabled, and then Task 3 returns to the Idle Loop.

1129 RO
Labels Address {Inst A?E Mnemonics States * Comments
: TRANK 0148 | ¥3 DL - Task 3 !
0149 D3 OUT PULSE?2 Complete clock pericd for COUNTER1, and i
01l4A 82 Imake OUTI high.
014B 21 LXI H, M POINT1 Load HL with message pointer of
014C 00 first part.
014D 07
014E Ch CALL MSGOUT Output message on CRT screen.
QL4F c2
0150 0oL
0151 21 LXT H, FILEP Load HL with file number pointer
0152 FO
0153 20
! 0154 7E MOY A, M Load A with file number.
0155 34 INR M Increment file number for next operatior
0156 CD CALL NMOUT Gutput file number to screen.
0157 8A
0158 03
0159 21 LXI H, MPOINT2 Load HL with message pointer of second ‘
015A 33 part.
0158 07
K 015C [)) CALL MSGOUT Qutput message on CRI screen.
015D c2
i j 015E 01 L
TRANXS 015F 2A LHLD REPBUF Load HL with the content of the
‘ 0160 FE repetoire pointer
0161 20
0162 CD CALL DHL Display contents of HL in HEX
0163 D8
‘ 0164 01
3 0165 06 MVI B, 06 Load B with number of spaces to be
0166 06 displayed on screen
0167 CcD CALL SPACE Display 6 spaces on CRT screen.
0168 CE)
0169 01 !
016A 2A LHULD PROGBUF T Load contents of program pointer imto
0168 FC HL
016C 20
016D cD CALL DHL Display contents of Hi. in HEX.
016E D8 o

HEX {08 No.
Labels Address [Inst|Alé Mnemonics States Comments
016F 01)
0170 06 MVI B, 06 Load B with number of spaces to be
. 0171 06 displayed on screen.
0172 CD { | _CALL SPACE [Display: 6 _space characters on screen.
0173 CE
0174 01
0175 2A LHLD KBLOK Load KBLOK pointer into HL.
0176 FA
0177 20
0178 2B DCX H KBLO r _go 0
0179 2B DCX H point to the current KBLOK pointer,
017A 22 SHLD KBLOK Store the adjusted KBLOK pointer
0178 FA into scratch pad.
017C 20
017D cD CALL DHL Display KBLOX pointer on screean.
OL7E D8
017F 01
0180 21 . LXI H, MPOINT3 Load HL with message pointer of third
0181 50 part.
0182 07 -
0183 <D . CALL MSG Display third part of message.
0184 i c2
0185 0l
0186 2A LHLD BDPOINT Load HL with contents of breakpoint dat
0187 Fé pointer which points to the last data
0188 20 collegted in the previocus KBLOKexecutdc
0189 EB XCHG Load HL into DE.
0184 21 LXI H, SDPOINT Load HL with the start of data buffer
018B 00) polinter.)
018C 24
018D 22 SHLD, CDPOINT Store SDPOINT in current data
018E F8§ ' buffer pointer.
018F 20
NLINE 0190 CcD CALL CROUT Qutput a new line on CRT screen
0191 BL ' -
0192 02
SAME 0193 OE MVI C, 20 Load C with ASCII code for space.
0194 20
0195 CD CALL ECHO ECHO space character on screen.
0196 BE
0197 02 : N
0198 7C MOV A, M Get high data byte
0199 F5 PUSH PSW Save data in memory.
ULlYA 23 J INXH Incremenc HL.
019B 7E MOV A M Get low data byte.
019C CD CALL NMOUT Display low data byte.
" 019D 8A
019E 03
019F Fl POP PSW Load high data byte,
01A0 cD CALL NMOUT Display high data byte.

92

HEX {D8 Na, .
Labals Address |Inst)Alé Mnemonics States C. mnents
01al 8A
01A2 03 -
01a3 cD CALL HILO Check if HLZ DE
01A4 63 L
01A5 03 T R -
01A6 D2 JNC CONTIN If HL< DE go to CONTIN
01A7 B8 to display more data
01A8 01
01A9 Ch - CALL CROUT Otherwise, tcrminate display, and issue
0)AA Bl carriage return (CR)
01AB 02
INIT 01AC D3 OUT PULSEQO Clear pulse counter_
01AD 80
0lAE D_3 OUT PULSE3 Initialize COUNTER1 for next
01AF : 83 counting operation.
0180 3E MVI A, 18 Load A with interrupt mask word
01B1 28 to reset RST 7.5 interrunt
01B2 30 SIM Set Interrupt Masks
01B3 CD CALL GKBLOK Reactivate system with execution
01B4 07 of the current KBLOK
01B5 02
01B6 FB EI Enable Interrupts.
0187 c9 RET Return to the
. CONTIN | 0188 23 INX H Point to next data byte
01B9 7D MOV A, L Load low byte of HL into A
01BA E6 ANI OF See if last HEX digit of pointer
O1BB OF denotes'start of new line
01BC c2 JNZ SAME No - not- at end of line of display.
01BD 93
O1BE 01
O1BF C3 JMP NLINE Yes - start new line of display.
01C0 90
0ic1 01
MSG 0lc2 4LE MOV C, M Load a byte from memory into C.
01c3 CD CALL CO Output byte to screen
_ 01C4 31
01c5 02
01cé6 23 INK H Point to next byvte in memory.
01C7 79 MOV A,C Load byte in C into A.
01Cc8 FE CPI 00 See end of message indicator.
01C9 00 N
.] 01cA C2 JNZ MSG No - Output next byte to CRT.
01CB c2
01cC 01.
01CD c9 Yes - Return to calling routine.
S2ACE 01CE OE MVI C, 20 Load C with ASCl1 code for space.
TOLCET T 20
SPACE 4~ 01D0 CD CALL CO Output one character to screen.
PSR ! L Ai‘. e “ ‘;

w‘ o r— " = . - — o - o .o . .
| . . 9

t . HEX [D8 No.

E Labels Address |InstfAlé Mnemonics States Comments

; 01D3 05 DCR B Decrement number of spaces

k 01D4 c2 JNZ SPACE+] If count In B is not gzero output

i T. 01D5 DO another space character.

. 0106 Jor ' -

E 01Dp7 c9 RET Otherwise, rcturn to calling routine.
1 DHL 01D8 7C MOV A, HL Load H into A,

. 01D9 [¢) CALL NMOUT Output content of A as a HEX digit.
: 01DA 8A

f : 01bB 03

01DC 7D MOV A, L Load L iato A.

] 010D CcD CALL NMOUT Output content of A as a HEX digitc.
: . O1DE 3

] 01DF 03 Return to calling routiane.

[

i N 01E0 c9 RET

AL M U

L BXITER: . 94
The EXITER subroutine is t!:e manager subroutine that keepuy crack and updates
—————8l1] pargmeter pointerg in the iibrary. Tt transfe urrs: i
meters to scratch-pad memory through XFER routine. Then it .utputs all the
parameters from the scra:ch—pad memory "to the QME partb “and counters.via OUTPAR.
Finally, it initiates steppoint control, data sampling and time incerval countizg
by activating PULSEL/ line. e
3
REX RO
Labels Address |Inst]A Mnemonics tates * Comments
b EXITER 01E1 2A LHLD 0800 16 Get pointer for archive
! 01E2 00 (first repetoire pointer)
F 01E3 ‘ 08
01E4 22 SHLD REPBUF] Store_inm scratch-p
01ES FE
01E6 20
GREP 01E7 2A LHLD REPBUF 16 Get REP pointer.
01ES8 FE °
01E9 20
O1lEA CD CALL LDE 18 Get program pointer and store
OlEB 39 in DE.
01EC 02
01ED ca JZ EXITER 7/10 | If all repetoires are executed, repeat
O1EE El execytion from the start, Otherwigse
01EF o1 continue,
01F0 22 SHLD REPBUF 16 Store the pew REP pointer jnto
O1IF1 FE scratch-pad.
0lF2 20
01F3 EB XCHG 4
01F4 22 SHLD PROGBUF 16 Store programs pointer into
) Q1¥S ¥C scratch-pad,
O0lF6 20
GPROG Q1F7 2A LHLD PROGBUF 16 Load program pointer into HL.
O1F8 FC
01F9 20
01FA CD CALL LDE 18 Load KBLOK pointer in DE.
3IFE KL }
01FC 02
O1FD CA JZ GREP 7/10 | If zero, get the next repetoire.
01FE E7 otherwise continue.
O1FF 01
0200 22 SHLD PROGBUF 15 Store program _poipnter jpto =
0201 FC scratch-pad. .
0202 20 !
0203 EB XCHG “ b
0204 22 SHLD KBLOK 16 Stoxe KBLOK pointer ints :
6205 FA scratehopad X
R 0206 20 ’
GABLOK 10207 2A LHLD KBLOK 16 Load KBLOK pointer into HL.
{
i
1

HEX |D8 No, . fe
Labels Address |Inst}Alé Mnemonics ., States Comments
0208 FA
0209 20
-. GKBLOE+3 | 020A cD CALL LDE 18 Load BKPOINT pointer into DE.
0208 39 ' i '
020C 02
020D CA JZ GPROG 7/10 | 1f zero, get the next program
020E Fl pointer. Otherwise contiInue.
020F Gl
1 : 0210 22 SHLD KBLOK 16 | Store KBLOK pointer into
0211 FA scratch-pad.
0212 20
. 0213 EB XCHG 4
; XFER Q214 11 LXI D, SCADST 10 Transfer control parameters of
‘ 0215 00 BEKPOINT to scratch-pad.
‘ - 0216 T 20
0217 | 06 | MvI B, 0A 7 Load B with number of bytes to be
0218 0A] transferred.
XFERS 0219 7E | MOV A, M 7 DO the transfer, until B 1is
_ 02]1A 12 STAX D decremented to zero.
0218 23 1 INKH i 10
021C 13 "INX D -) 10
; 021D 05 DCR B ' 4
i ' 021E c2 JNZ XFERS 7/10
021F 19
0220 02
QUTPAR 0221 2A) LHLD RATIO & STATUS 16 Load Ratio and Status control
0222 00 parameters into HL.
- 0223 20
0224 22 SHLD RS PORT 16 | Output HL to QMF
0225 01 B
N 0226 71
' OUTPARS 0227 2A LHLD TIM 16 GET time interval count into HL.
0228 08 ' ’
0229 20
022A EB XCHG 4
022B 21 LXI H, TIMPORT 10 Load HL with time interval port
Tz~ 7|7 6 address.
‘ 022D 21
C22E 73 MOV M, E 7 Transfer the time interval.
022F 72 MOV M, D 7
0230 2A LHLD AMU 16 GET AMU word and store into HL.
| 0231 04
& 0232 20
0233 22 -] SHLD AMUPORT 16 Output AMU word to QMF.
0234 11
0235 21
0736 | D3 OUT PULSE1L 10 Injitiate sampling data pulses.
0237 81
0238 Cc9 RET 10 Return to calling routine.
. LDE 0239 5E MOV E, M 7_|_Load DE with two bytes from

| 96
HEX ['D8 No.
Labels Address |Inst|Al6 Mnemonic: States Coxcmants
023B 56 MOV D, M 7-
023C 23 INX H 6
023D 7B MOV A, E 4 Check if the two bytes are both
023E B2 ORA D 4 zero and set flag Z when true.
023F C9 RET 1C Return to calling routine.
SDE 0240 73 MOV M, E 7 Store the contents of DE in
0241 23 INX H 6 nmemory at the addregs found in
0242 72 MOV M, D 7 |HL.
0243 23 INX H 6
0244 C9 RET 10 Return to calling routine.
{
3

&

Labels Address {Inst Mnemonics States * Comments -

2IGTB 0245 30 0 Table of ASCII Hex digits
. 0246 31 1
! 0247 32 2
0248 i3 3
0249 34 4
024A 35 5
02438 36 6
024C 37 7
024D 38 8
024E 39 9
024F 41 A
0250 42 B
0251 43 C
0252 44 D
0253 45 E
0254 46 3

.
H ——
i
'

L.

Y SRS - ECRRAEE I

98

Initialization Table: The table Is oré}nized £5§Q'&BEB;'5f two bx;u:léach wl.ere

(i) first byte is the low byte addres. which_points to a contro. w.ru register,

or a counter in a peripheral device. T)

(ii) second byte is the control word to initialize the target device ports or :

counters.
e 1
|
H
!
REX T |
Labels Address |Inst{A Mnemonics States * Comments i
INTABL 03E0 00 Low byte adcress of 8155 control E

03E1l CF register control word for 8155 }

03E2 oU low byte address of 815 timer

03E3 FF low byte count of 8155 timer

03E4 05 liigh byte address of 8155 timer

03ES5 10 high byte ccunt of 8155 timer

03E6 0B low byte address of 8255A (A20) CR

03E7 92 - Control word for 8255A (A20)

03E8 13 Low byte address of 8255A (A21) CR

03ES9 80 .___fggﬂgsol word for 8255A (A2l)

03EA OF Low byte address of 8253 (A2

03EB 38 control word for counter 0

03EC OF Low byte address of 8253 (A22) CR

03ED 7TA control word for counter 1

03EE OF Low byte address of 8253 (A22) CR

03EF BA control word for counter 2

03F0 oD Low byte address of ccunter 1

03F1 20 low byte count for counter 1 register

03F2 0D Low byte address of counter 1

03F3 00 high byte count for counter 1 register

99
3
|
B APPENDIX B
PART 1 '
| -~
ITIV Ltility Routines
' ; The PCU-85 software monitors can communicate serially at 9600 BAUD
rate with any device that has 'RS232C' interface. This is accomplished
oy using special software subroutines, defined as Teletypewriter (TTY)
utility routines. An index and a summary of each routine's function 1
are first described. Then a list of these routines in 8085A assembly
areumonics language and their corresponding hexidecimal codes is given.
Subroutines Index
1 - NAME: DIGTB (Hexadecimal Digit Table)
ADDRESS: 0245
DESCRIPTION: Table of ASCII character representing in an
increasing order all the Hex digits.
' 2 - NAME: CI (Console Input) E
; ADDRESS: 0256 ﬂ
5 INPUTS: None

OUTPUTS: A character from TTY in register A

CALLS: Delay subroutine

DESTROYS: A, F/F's .

DESCRIPTION: CI waits until a character has been entered by an
operator at the TTY and then returns the character
via the A register, to the calling routine.

3 - ¥YAME: CO (Conmsole Output)
ADDRESS: 0281
INPUTS: Character to output to TTY in register C
OUTPUTS: Character output to TTY in register C
CALLS: Delay routine

. DESTROYS: A, F/F's

| DESCRIPTION: CO sends its input argument to the TTY

NAME: CNVBN (convert from ASCII hex to binary equivalent) :

ADDRESS: 02A8

INPUTS: ASCII hex character in register C

QJTIPUT: Binary hex in register A

CALLS: Nothing

DESTROYS: A, F/F's

DZSCRIPTION: CNVBN converts the ASCII code of a hex digit into its
corresponding binary value, It does not check the
validity of its input.

~
]

. 100

5 - NAME: CROUT (Carriage Return OQutput)
ADDRESS: 02B1
INPUTS: None
OUTPUTS: None
CALLS: ECHO routine
DESTROYS: A, B, C, F/F's
DESCRIPTION: CROUT sends a carriage return and a line feed through

the ECHO routine to the console.

6 - NAME: DELAY
ADDRESS: 02B7
INPUTS: 16-bit binary integer in DE, denoting number of times to loop.
OUTPUTS: Nomne
CALLS: Nothing
DESTROYS: A, B, E, F/F's
DESCRIPTION: Delay decrements the input argument until it is counted
down to zero, and them returus to caller. The delay

i time in nanosecond is Tdelay (ns) = (21 (N - 1) + 20) teve ;
where N = decimal value of the binary integer in DE :
tove = clock cycle of the 8085A.

7 - NAME: ECHO
ADDRESS: 02BE
, INPUTS: Character in register C to echo to termiral.
OUTPUTS: Character in register C echoed to terminal.
CALLS: CO
DESTROYS: A, B, F/F's '
DESCRIPTION: ECHO takes a single character as input, and via CO, N
sends that character to the terminal. A carriage return
is echoed as a carriage return with a line feed, and an
escape character is echoed as §$.

8 — NAME: ERROR

ADDRESS: 02D7

INPUTS: None

OUTPUTS: Nane

CALLS: ECHO, CROUT, MON (RST 5.5 routine)

DESTROYS: A, B, C, F/F's

DESCRIPTION: ERROR prints the error character, an asterisk, on the
console, followed by a carriage return-line feed. And
then returns control of the processor to the beginning
of RST 5.5 routine.

9 - NAME: GETCH (Get character)
ADDRESS: 02E2
INPUTS: None
: OUTPUTS: A character from TTY to register C
f CALLS: CI
| DESTROYS: A, C, F/F's
DESCRIPTION: GETCH returns a character from the TTY to the calling
routine.

. ' 101

10 - NAME: GETHX (Cet hexadecimal digit)

ADDRESS: 02E9 .

INPUTS: None

OUTPUTS: BC -~ 16 bit integer

D - Character which terminated the integer
Carry Flag = 1 if first character not delimiter
= 0 if first character is delimiter

CALLS: GETCH, ECHO, VALDL, VALDG, CNVBN, ERROR

DESTROYS: A, B, C; D, E, F/F's
1 DESCRIPTION: GETHX accepts a string of hex digits from the TTY
' and returns their value as a 16 bit binary integer.
If more than 4 hex digits are entered, only the last
4 are used. The routine terminates when a valid
delimiter is encountered. The delimiter is also
returned as an output of the function. Illegal
characters (not hex digits or delimiters) cause an
error indication. If the first valid character
encountered in the input stream is not a delimiter,
GETHX will return with carry bit set to 1; otherwise,
the carry bit is set to zero and the contents of BC
are undefined.

11 - NAME: GETNM (Get hexadecimal numbers)
ADDRESS: O031E
INPUTS: Count of numbers in register C to find in input stream.
OUTPUTS: Numbers are found in reverse order on top of STACK such
that last number is topmost.
CALLS: GETHX, HILO, ERROR
DESTROYS: A, B, C, D, E, H, L F/F's
DESCRIPTION: GETNM finds a specified count of numbers, between
1 and 3, inclusive, in the input stream from TTY,
and returns their values on the stack. If two or
more numbers are requested, then the first must be
less than or equal to the second, otherwise, the
first and the second number will be set equal. The
last number requested must be terminated by a carriage
return or an error indication will result.

L 12 - NAME: HILO (High Low)
o} ADDRESS: 0363

! INPUTS: DE - 16 bit integer

! HL - 16 bit integer
|- OUTPUTS: Carry Flag = O if{ HL < DE
1
|
t

n

1 if HL > DE
CALLS: Nothing
DESTROYS: F/F's
: DESCRIPTION: HILO compares the two 16 bit unsigned binary integers
‘ in HL and DE. The carry bit is set according to the
result of the comparision.

13 -

14 -

16 -

NAME: NMOUT (Hexadecimal Number OUTput)

ADDRESS: 038A .

INPUTS: 8-bit integer in register A

OUTPUTS: None

CALLS: ECHO, PRVAL

DESTROYS: A, B, C, F/F's

DESCRIPTION: NMOUT converts the 8-bit, unsigned binary integer
in the A register into two ASCII char-
acters. These two characters are sent to the console
at the current print position of the console.

NAME: PRVAL

ADDRESS: 03A5

INPUTS: A hexadecimal integer, range O to F in register C

OUTPUTS: Equivalent ASCII character in register C

CALLS: Nothing

DESTROYS: B, C, H, L, F/F's

DESCRIPTION: PRVAL converts a number in the rage O to F to
the corresponding ASCII character. PRVAL does
not check the validity of its input argument.

NAME: VALDG (Valid DiGit)

ADDRESS: 03AD

INPUTS: ASCII character to be tested in register C

OUTPUTS: Carry=1 if character represents valid hex digit
=0 otherwise

CALLS: Nothing

DESTROYS: A, F/F's

DESCRIPTION: VALDG test its input argument and sets the
carry bit if the argument represents a valid
hex digit and resets the carry bit if otherwise.

NAME: VALDL (Valid DeLimeter)

ADDRESS: 03C8

INPUTS: ASCII character to be tested in register C

OUTPUTS: Carry = 1 if input argument is valid delimeter

= 0 otherwise

CALLS: Nothing

DESTROYS: A, F/F's

DESCRIPTION: VALDL tests its input argument and sets the
carry bit if the argument represents a valid
delimiter character (comma, carriage return,
and space) and resets the carry bit if otherwise.

NAME: FRET (Failure on RETurn)

ADDRESS: 03D3

INPUTS: None

OUTPUTS: Carry = 0

CALLS: Nothing

DESTROYS: Carry

DESCRIPTION: FRET resets the carry and then returns to the
calling routine invoking FRET. Thls routine
is jumped to by any routine that wishes ta
indicate failure on return.

18 -

19 -

NAME: SRET (Success on RETurn)

ADDRESS : 03DE
INPUTS: None
OUTPUTS: Carry = 1
CALLS: Nothing
DESTROYS: Carry

DESCRIPTION: SRET sets the carry and then returns to the calling
routine invoking FRET. This routine is jumped to by
routines wishing to return success.

Table of Address of Utility Routines

ROUTINE START ADDRESS

DIGTB 0245

CI 0256

co 0281

02A8

02B1

02B7

02BE

02D7

02E2

02E9

031E

0363

038A

03A5

03AD

03c8

03Dp8

03DE

" + J I‘A “L

. 104

PART 2

Console Monitor

Upon the operator request the Console Monitor, command routines plus -

utility routines, is invoked by activating RST 5.5 interrupt line via

switch SW3. The monitor starts executing after the interrupted routine has

completed its assigned task. The logic operation of the monitor is shown

in the flow diagram of Figure B-1. The monitor receives an input character
from the TTY and attempts to locate this character in its command character
table. When found, the routine corresponding to this character is selected
from a table of command routines addresses, and the CPU control is trans-
ferred to this routine. If the character does not match any entries, control
is passed to the error handler.

Many command routines can be added to the monitor by adding their
corresponding characters to the comrmand character table, and by adding the
first instruction's address of each routine to the command routine addresses.
The number of commands (NOD) which aids the monitor to scan through the
command character table, should be adjusted to equal the number of charac-
ters in the table.

The present monitor can execute any of the three existing routines,
ALTER, COPY and GO routines.

The ALTER command routine displays the memory address location entered
by the operator and its contents on the CRT. Thus the contents of memory
may be examined and modified. If it is desired to change the contents of
this location, the operator enters the desired value in hexadecimal. Other-
wise the contents are left intact. In both cases, the address is incremented
automatically, to point to the next location in memory. To exit the ALTER

routine any character except delimeters and hexadecimal digits can be

Console
RST
5.5 Monitor

Disable interrupt

Qutput prompt character

!

Get input Command character.
Check if it is one of the valid
commands stored as a table.

NO

YES

L

Call ERROR routine
and output "*" as
an error indicator.

Compute the command routine
start address.
Jump to the command routine
and execute.

Alter
Routine

Copy
Routine

Go
Routine

Figure

B-1. Console Monitor Flowchart.

i
|
i,

e o

B M Al

entered.

The COPY command routine relocates the contents of a block of memory
from one area of the memory space to another. The routine requires three
operators separated by commas. Each operator is at most four hexadecimal
digits wide. The first two operators represent the starting and the ending
addresses of the block, while the third operator represants the destination
address to which the first byte will be transferred. Once the transfer is
completed, the CPU control is relinquished to the beginning of the monitor.

The GO command routine transfers the control of the microprecessor
from the console monitor to the PCU-85 monitor. Similar to the COPY routine
the GO routine requires three operators - Repertoire pointer, Program
pointer and KBLOK pointer. These operators are used to update their
respective values in the scratch pad. Then normal control operation of the
QMF resumes with the new KBLOK control parameters.

Flowchart diagrams of ALTER, COPY and GO logic operation are shown in
Figures B-2, B~3 and B-4.

Any illegal character entered after the command character will be
recognized as an error. An asterisk, *, will be issued as error indicator.
Then, control of the microprocessor is transferred to the start of the
console monitor. Therefore, one of the commands can be repeated with the

right parameters required by that command routine.

ALTER

Get Memory Address!
from TTY.

ALTERS
Display Memory Address and its content

|

1. Get Two hexadecimal digits'.
2. Check 1f there is any digit.

NO

Is there data?

1. Replace memory content
with the new data.

ALTER10

Increment Memory Address

T

Figure B-2. ALTER Flowchart.

'1f a non-hexadecimal digit is entered, the B8085A control is transferred
to the ERROR handler and then to the console monitor.

107

—

COoPY

LQ

(Starting address), (Ending address), (Destination address).

Get the three addresses: l

,_Q_

COPY5
Get source byte and transfer to

destination via a register.
Increment destination address
and check for overflow.

YES

Overflow?

NO

L8

1. 1Increment Source address.
2. Check 1if Ending address >
our

0

!

Branch to
Console
Monitor.

Source < Ending?

<

Transfer next byte.

Figure B-3. COPY Flowchart.

Get the three level pointers:

;- (Repertoire), (Program), (KBLOK)
and transfer them to the scratch pad.

N
' Yaiear Pulse Counter and Pending Interrupts

Adjust Current Data Pointeri]

y

Process the first KBLOK control parameters
pointed to by the new value of KBLOK.

Enable Interrupts.

Figure B~-4. GO Flowchart.

INT: RST 5.5 (Task &) . - ‘ 110
— N v
. seeslrometer
Task 4 can axecute any of the following coumands. :
1. ALTER: A(address): Examine and optionally modify memory locatZons inaividually,
starting at the addregs following the command letrter A,)
2. _GO: G P POINTER): Start control of the mass

gpectrometer with KBLOK parameters defined by the three level pointers.
3. COPY: C(low address), (high address), (destination): Move the contents of

memory between (low address) and (hi}h address) inclusive to the area of RAM
beginning at (destination).

Labels Address Instm Mnemonics - States' * Corments - .
MON 00BC F3 DI Disable interrupts.
‘ MON1 008D 0E MVI C, 3F Load C with ASCII code for (?)
00BE 3F
O0BF (o)) CALL CO OQutput prompt character (?7) to
00CO 81 screen.
00C1 02 '
00C2 cD CALL GETCH Get a command character from
00C3 E2’ operator..
00C4 02
00C5 (o] CALL ECHO Echo command character to screen.
00Cé6 BE
00C7 02
00C8 79 MOV A, C Tut character into "A"
00C9 01 LXI B, NOD Initialize BC to number of
00CA 03 commands.
00CB 00
00cc 21 LXI H, CCT Initialize HL to point to the
00CD FO command character table. b ;
00CE 07 !
MONS Q0CF BE | CMP M Compare table entry and character.
i 0ono CA JZ MON1O Braoch if equal,
00Dl DB
00D2 00
00D3 23 INX H Else, increment table pointer.
00D4 1] DCR C Decrement loop_count.
‘ 00D5 C2 JNZ MONS Branch if not at table end.
| 00D6 CF
00D7 00
00D8 Cc3 JMP ERROR Else, command character is
00D9 D7 illegal.
00DA 02
MON10 00DB 21 LXI, CAT lnitialize HL to point the
00DC 80 command address table.
00DD 07 :
O0DE 09 DAD B Add the remainder of loop count.
, OORE 1 Q9 RAD B dd again.
s 00F0 7E MOV A, M Get LSP of address to A.
‘ j— OOE1 23 JNX H Point to next byte in table.
00E2 66 MOV H, M Get MSP of address to H.

r{ R .‘.- R et o - .
1 HEX |[D8 No. 111 I l

; Labels Address |Inst|Al6 Mnemonics States Comments
|__Q0E3 | OF V L, A Put LSP of address into 1. - -
! 00E4 E9 PCHL " | JMP to the command routine.
ALTER Q0ES5 cD CALL_GETHX i GET memory address from operator
00E6 B9 and store in BC.
QQE7 02 :
SH. B Load BC on stack,
00E9 £l POP H Load HL from stack.
ALTERS QO0EA 7C MOV A, H Move high byte address into A.
00EB_ | CD CALL NMOUT Qutput A to TTY
00EC 8A
00ED 03
OOEE 7D MOV A, L Move low byte address into A. -
OOEF cDh CALL NMOUT - Output A to TTY. .
00F0 8A
i - Q0FL 103
_00F2__| OE MVI C Load C with ASCII code for (!)
00F3 .
00F4 CDJ. CALL ECRO ECHQ C to TTY.
O0F5 BE
00F6 02
00F7 72 [MOvVaA, M - Get memory byte into A.
00F8 cD CALL NMOUT Output A to TTY.
00F9 sa | ‘ K
00FA 03)
00FB 1) MVI C, 2D Load C with ASCII Code for (=). ‘
0QFC 20
QOFD cp 0 ECHO C to TTY.
O0FE BE
Q0FF 02
0100 CcD CALL GETHX Get new value for memory location
0101 E9 if any.
0102 02
0103 D2 JNC ALTER10 If no value present, branch to
0104 - 1o . get next byte.
\ f 0105 01 ‘
0106 _ 11 MOV M. . C : Else. store pew byte ipnto memory -
ALTER10 0107 23 INX R Point to next byte in memory.
! 0108 ¢l IMP_ALTERS Branch to get next byte.
0109 }
010A 00
GO 010B OE MVI C,,03 Get three level pointers from
. 010C 03 TTY.
\ 010D CD CALL GEINM
i 010E ik .
010F 03
0110 El POP H Load KBLOK pointer into HL.
0111 22 SHLD KBLOK Store into scratch pad.
' 0112 FA
0113 20
0114 El POP H Lload PROG pointer into HL. ~

.r'ww

HEX |D8 . No. 112
Labels Address |Inst|Alé Maemonics States Cowun=nts .
0113 22 HLD PROGBUF Store into scratch pad.)
o116 FC
0117 20
0118 El POP H Load "REP pointer" into HL.
0119 22 {SHLD REPBUF Store imto scratch pad.
0114 FE
Q11B 2
0110 D3 OUT PULSEQ Clear dara caunter H
011D 80 ’
011F | 3E MVI A, 18 Reget RST 7.5 interrypt.
QllF 18
0120 30 SIM
0121 2A LHLD BDPOINTER Adjust current data pointer to
0122 ¥6 the value found in the data
0123 : 20 pointer.
0124 | 32 SHLD CDPOINTER
0125 F8 '
0126 .20
0127 €D { _JCALL GKBLOK Get breakpoint parameters and
0128 07 output its parametera to QMF.
0129 02
012A B j 31 Enahlie interrupt and return
0128 c9 RET ©3 interrupted Troutine.
COPY 012¢ OE MVI, 03 Get three addresges from TTY.
012D 03
012E CD " ICALL GETNM
012F 1E
0130 03
0131 Cl OP B Load destination address into BL.
0132 El POP H Load Ending address into HL.
0133 D1 PQP D Load Starting address into DE.
COPY5 0134 1A LDAX D Get source byte.
0135 02 SDAX B Move byte to destination.
0136 03 INX B Increment destination address.
0137 78 | npv AB Test for destiuation address overflow.
0138 .3 % AC : .
0139 CA . 1f no, terminate command.
013A BD
0138 00
013C 13 INX D Else, increment source address.
013D CD CALL HILO Check if ending address > source
- 013E 63 address. :
013F 03
0140 1 D2 JLINC MONL If not, command is done.
0141 BD
0142 20
0143 €3 JMP_COPYS Else, move the next byte.
0144
Q145 (1)}
0146 _

Address

0780 Table of addresses of commard
0781 " 1routines,

0782
0783
0784
0785
0786
0787

Table of valid command characters.

TFTY UTILITY ROUTINES

114

These urllity subroutines are used by the TTY ronitor to execus. thie commands

desired by the operator. A description of each subroutine is sumpmarized in

part vne at the start of appendix B.

AEX NU-
Labels Address |Inst Agg' Mnemonics States Comments
Cl 0256 Fi {.. DL
0257 D5 PUSH D Save DE
CI05 0258 20 RIM Get Input Bir
0259 12 RAL Into Carry F/F
025A DA JC C105 Branch If No Start Bit
0258 58
025C 02
025D 11 LX1 D, WAIT Wait until middle bic
025E 05
025F 00
0260 CD CALL DELAY
0261 B7
0262 | 02
0263 C5 PUSH B Sa & BC
0264 01 LX1 B, 8 Tnicialize B to zero, and C to
0265 08 nuober of data bits.
0266 00
CcIl0 0267 " LX1 D, 1B TIM Wait until middle of next bit
0268 0A
0269 00
026A CD CALL DELAY
0268 B7
026C 0z
026D 20 RIM Get the bit
026E 17 RAL Into carry e
026F 78 MOV A, B Get partial result
270 IF RAR Shist in next data bit
0271 47 MOV B, A Replace result
0272 oD DCR C Decrement counts of bits to GD
0273 c2 JNZ CI10 Branch IF more to go
0274 67
0275 02
0275 11 LAL'D, IBTIM tlse, want to wait out
0277 0A stop bit
0278 00
1279 CD CALL DELAY
027A B7
Q278 02
027C 78 MOV A. B Get result

|
i
i
]
1
i
{
i

HEX [D8 No. .
.abels Address |Inst|Alé Mnemonics States Compents
027D Cl FOPF B Restore saved reglsters
027E Dl POP D
027F FB E1
0280 c9 RET Return '
co 0281 F3 DI
0282 [c5 PUSH B Save BC :
0283 D5 PUSK D Save DE
0284 3E MVI A, STRT S Start bit mask
0285 CD
0286 06 MVI B, 8 B will count bits to send
0287 08
c005 0288 30 SIM Send A bit
0289 11 LXI D, OBTIM Wait for TTY to handle it
028A OA
0288 > 100
" 028C | CD CALL DELAY
028D B | B7]
028E 02
028F 79 MOV A, C Pick up bite left to send
0290 IF RAR Low order bit to carry
0291 | 4Ff MOV C, A Put rest back
0292 3E MVI A, SSTRT Shifted enable bit
0293 80 .
0294 IF RAR Shift in data bit
0295 EE | - XRI 80 Complement data bit
0296 80
0297 05 DCR B DEC Count
0298 F2 JP C005 Send if more bits need to be sent
0299 88
029A - 02
0298 3B MVI A, STOPB Else, send stop bit
029C 40
0290] 30 SIM
029E " IXI D, TIM2 Wait out parity bit
029F 14 j
0240 00
02A1 CcD CALL DELAY
02A2 B7
02A3 02 .
02A4 D1 POP D Restore saved registers
0245 | C1 POP B,
0246 F3 EL
0247 c9 RET Return
CNVBN 02A8 79 | MOV A, C
02A9 D6 sur o" Subtract code for 'O from argument
02AA 30
02AB FE CPI "10" Want to test for result of 0 to 9
02AC 0
02AD F8 RM If so, then all done
02AE | D6 SUL ' 7"

Elge, result between. 1/ and

e

L e g 0

116

HEX |D8 No. e
~abels Address |Insc]Alé Mnemonics States Comments
02B0 Cc9 RET -Return _ .
C RCUT 0281 OE MVLI C, CR ~ Put ASCC.I CR IN C
02B2 oD .
02B3 cd CALL ECHO ~-Gutput.CR
02B4 BE
02B5 02 .
0286 c9 RET -Return
DELAY 0287 1B DCX D -Decremeut Input Argument
0288 A MOV A, D
0289 B7 ORA E
02BA Cc2 JNZ DELAY ~1f argument not 'G', keep going
02BB F1)
028C 05
028D Cc9 RET
ECHO 02BE 41 MOV B, C -Save argument
" 02BF 3E MVI A, ESC
02¢C0 1B
02C1 B8 CMP B -See if echoing an escape character
02C2 C2 JNZ ECHO3 -No - Branch
02C3 c? -Yes - ECHO A'$' character
02C4 02
02C5 QE MVI C, 'S’
02¢6 24)
ECHCS 02¢7 CD CALL CO -Jo cutput through CO
02C8 €1
Q2¢9 02
02CA 3E MVI A, CR
02CB oD
02CC B8 JMP B ~See if character was carriage return
02CD C2 JNZ ECH10 -No ~ No need to take special action
02CE D5
02CF 02
0200 §OE MVI C, LF ~Yes - Want to ECHO line feed, too.
0201 0A)
02b2 CD CALL CO
02D3 81
02D4 02
ECH10 02DS 48 MOV C, B -Restore argument
02D6 C9 RET .
ERROR 02D7 QE MVI C, '*' -Send '*' to CRT
0208 24 N
02D9] CALL ECHO
Q2Ls BE
02DB 02 .
02DC CD CALL CROUT -Skip to beginning of next line
02DD Bl
Q2DE 02
Q2DF c3 JMP MONOL -Get another command through monitor
G2EQ BD
02E1 00

i S

o 4

AR Sy

e mp oz

HEX] D8 No. 117
_adels Address |[Inst|Alb Mnemonics States Commants
GETCH 02E2 CD CALL CI ~Get charpctyr from termipnal
02E3 56 .
02E4 02 .
02E5 E6 ANI PRTYO -Turn off parity bit in case
02E6 7F t by conaole.
02E7 4F MOV C, A -Put value io € and retugn.
02E8 c9 RET
GETHX 02E9 ES5 PUSH H ~Save HL
“TOZEX 21 LXI H, O -Initialize result.
02EB 00
] 02EC 00
02ED 1E MVI E, O -Initialize digit flaz to fulse
3 O2EE 00
GHXO05 02EF CcD CALL GEICH -Get a character
02F0 g E2
3 02F1 . jo2
02F2 4F MOV C, A
02F3 cD |. CALL ECHO -Echo_the character
02F4 BE
02F5 02
02F6 c | '] caLL vawpL _See if delimiter
02F7 c8
02F8 03
02F9 D2 JNC GHX10 ~No, branch
02FA 08
} 02FB 03
02FC 51 MOV D, C ~Yes, 8ll dope, returp delimiter
02FD E5 PUSH H
E 02FE cl POP B ~Move result to BC
{ O2FF EL POP H —Restore HL
0300 B MOV A, E -Get Flag
0301 B7 ORA A -Set F/F's
0302 c2 JNZ SRET -1f flag not-zero, a number has
0303 DE i been found)
U304 N
03095 CA NZ _FRET —Else. delimiter was fixst character _
0306 DB
0307 03
GHX10 0308 CcD CALL VALDG -If not delimiter, see if digit
0309 AD
030A 03 3
030B D2 JNC ERROR -Error if not a valid digit, either
030C D7
30D 02
030E cD CALL CNVBN ~Convert digit to its binary value
030F A8
0310 Q02
0311 1E MVI E, FF =Set digit flag not=2@rc.
0312 ¥F
0313 29 DAD H ~Multiply HL by 2
0314 29 DAD H ~Multiply HL by 4

118
HEX D8 " No.
Labels Addraess }Inst{Alé Mnemonics States Comments
0315 29 DAD H ~Multiply HL b, 8
0316 29 DAD H ~Multiply H. by 16
0317 06 MVI B, D -Clear upper 8 bits of BC
0318 00 N
0319 4F MOV C, A -Binary value of character into C
031A 09 DAD B -Add this value to partial result
031B c3 JMP GHXO05 ~Get next character
031C EF
‘1 031D 02
GETMM 031E° 2E MVI L, 3 -Put maximum argument count into L
031F 03
0320 79 MOV A, C -Get the actual argument count
0321 E6 ANI 3 -Force to maximum of 2
0322 03
0323 c8 RZ -1f zero, don't bother to do anything
0324 67 MOV H, A -Else, put actual count into H
GNMOS5 0325 <D CALL GETHX -Get a number from input stream
0326 B9 :
0327 07
0328 D2 JNC ERROR -Error if not there. :
0329 o7 [
032A 02
0328 C5 PUSH B ~7lse, save number on stack
032C 2D DCR L -Decrement maximum argument count
032D 25 DCR H -Decrement actual argument count
032E CA JZ GNM10 -Branch if no more numbers wanted
OQ3ZF 3A
0330 03
0331 7A MOV A, D -Else, get number terminator to A
0332 FE CPI CR -See if carriage return
0333 ()]
0334 CA JZ ERROR -Error if so
0335 D7)
0336 02 |
0337 C3 “JMP GNMOS ~Else, process mext number
0338 25
0339 03
GaM10 033A 7A MOV A, D -When count 0, check last terminator
0338 FE CPI CR
033C oD
033D c2 JNZ ERROR -Error 1f not carriage return
033E D7
033F 02
0340 01 | LXI B, FFFF -BC gets largest number
0341 FF
0342 FF
0343 1D MOV A, L ~Get remainder of maximum argument coun
0344 B7 ORA A -Check for zero
0345 CA J2 GNM20 ~1f yes, 3 numbers were input
0346 4D ;
0347 03

119
HEX (D8 No. .
Labels Address |Inst{Al6 Mnemonice States Comments
GNM15 0348 (] PUSH B -1f not, fill remaining arguments
0349 2D DCR L uith FFEF !
: U3 tI N2 TRNTS ; \
034B 48 R
034C 03 : .
CNM20 034D () POP B —Get the 3 arguments out .
034E D1 POP D into the CPU registers :
034F El POP H {
' 0350 €D CALL HILO ~See if first > second '
0351 63 -
0352 03 !
U353 D? JNC CRHZ5 —No, branch
0354 58
0355 03
0356 54 MOV D, H -Yes, make second equal to the first
0357 5D MOV E, L
GNM25 0358 E3 XTHL ~Put first on stack, get return address
0359 D5 |, PUSH D -Put second on stack
035A [+ PUSH B ~Put third on stack
0358 ES PUSH H -Put return address on stack
GNM30 035C 3D DCR A -Decrement residual count
035D F8 RM -1f negative, proper results on stack
Q35E El POP H -Else, get return address
035F E3 XTHL P -Replace top result with return address
0360 c3 JMP GM30] -Try again 3
0361 5C . '
U6z R i :
HTLO 0363 c5 Pt . =Save BC
036 oSave A fQoY o Yeg stex
-Save HL

-Check for JE = (300

-if t i+, compaiiscn is done

~'acrame it ok

-Tes: for z<ro result

LLomust have oncaiced FEFC

-1l avi, restore orig.nei i .

5 -Save bb
L hs 3 4 OMYI A, FF . -Take 2's complexant of DE
ST CFE
. G375 AA i PR b
R 57 b Fvov . A
57 3E { WV A, FF
B Yz i Ff !
G579 AB 1 T i
L S WO E;K i

e m e e e i e a

HEX {D8 ' No. 120
Labels Address |Inst{Alé Mneaonics States Corments
0378 13 INX D]
037C 70 MOV A, L ~Add HL ana .'E
037D 83 ADD E .
037E 7C MOV A, H
037F 8A ADC D -This operation sets carry properly
0380 01 POP D -Restore original DE contents
0381 78 MOV A, B -Restore original contents of A
0382 Cl POP B -Restore original contents of BC
'} 0383 c9 RET -Return with carry set as required
HILOS 0384 El POP H ~-1f HL = FFFF, then carxy can only E
0385 78 MOV A, B be set to 1
0386 Cl PCP B -Restore original cocnients of BC
L 0387 C3 JMP_SRET -Set carry and return
0388 DE
0389 03
NMOUT 038a ES PUSH H —Save HL (to be destroyed by PRVAL)
0388 FS PUSH PSW -Save argument
038C OF |. RRC -Get upper 4 bits to low 4 bit
(0380 o | RRC positiong
038E OF RRC
038F OF "BRC
0390 E6 ANI HCHAR ~Mask out upper 4 bits
0391 OF ’ I
F 0392 4F MOV C, A
0393 CcD CALL PRVAL -Convert lower &4 bits to ASCII
0394 A5
h 03y5 Q3
0396 Cch CALL ECHO -Send to terminal
0397 BE)
0398 02
0399 F1 POP Pow ~-Get back argument
039A E6 ANI HCHAR -Mask out upper 4 bits
0398 OF '
039¢ 4F MOV C, A
1) LD CALL PRVAL --Convert lower &4 bits to ASCII
039E AS
039F 03
03a0 CD CALL ECHO ~Send to terminal
0341 BE
-\ 03A2 02
) 03A3 EL POP H, “Restore saved value of HL
03A4 c9 RET -Return
PRVAL 03AS 2) 1XI H, DIGTB -Address of ASCII digit table
03A6 45 -
G3A7 02
03a8 06 MVI B, O ~Clear high order bits of BC '
03A9 00
034A 09 DAD B -Add digit value to HL address |
03A3 4E MOV C, M -Fetch ASCIT digit from table
03AC c9 RET ~Return
I A

HEX [D8 No. 121
Lebels Address jInst|Alé Mnemonics States Comments
\ALDG 03AD 79 MOV A, C -Test character: against ASCII 'O’
03AE FE CPI '0'
- 03AF 30 -
0380 FA JMP FRET -1f ASCII code less, cannot be valid
03Bl DB digit
03B2 03 .
0383 FE CP1 '7' -Else, see if in range '0' - '9'
03B4 39
‘1 03B5 FA JM SRET -Code between '0' and '9'
l 03B6 DE
03B7 03
03B8 CA JZ SRET -Code_egual '9’
0389 DE
3 03BA 03
i 038B FE CPI 'A' -Not a digit, try for a hex letter
1 03BC 141 .
03BD FA JM FRET - ~No, code is between '9' and ‘A’
U3BE B
03BF 03
03C0 FE CPI 'A' -See if code is between 'A' and 'G'
03C1 471 |
03C2 ¥2 JP FRET -No, code is greater than 'F'
03c3 DB .
03Cé4 03
03C5 Cc3 JMP SRET -Yes, code is between 'A' and 'F'
03C6 DE inclusive
03C7 03
“VALDL 03C8 79 MOV A, C -Check for comma
03C9 FE cPL','
03CA 2C '
03CB | CA JZ SREY
03CC DE
03cD 03
03CE FE CPI CR -Check for carriage return
03CF oD j
03p0 CA JZ SRET
03D1 DE
03D2 03
03D3 FE CPI ' * -Check for space
03D4 20
03D5 CA JZ SRET
03D6 DE
03D7 03
03D8 C3 JMP FRET -Error if not of the above
0309 DB
03DA 03
A FRET 03DB 37 STC -First set carry true
o 03DC 3F CMC -Then complement it to make it false
03pD c9 RET -Return
SRET 03DE 37 STC -Set carry true
03DF c9 RET -Return

.

MESSACE (FILE HEADER): .

122

File header is a message to be displayed on CRT screen at.the start of each
data transfer from buffer memory to CRT. The following i. & table of ASCII1

characters that spell out the message via Task '3 (RST 6.5 Lnterrupt service)

routine.

BAR] 0% I
Labels Address {Inst}A Mnemonics State Comments - !
MPQINTL Q700 QD 1 CR ~New line ;
0701 OA |LF ' i
0702 09 | 7148 '
0703 56 |1 ~This !
()13 78 |0 5 :
0705 %9 |1
0706 53 1S
0707 20 | SP —Space
0708 49 11 -1s
' 0709 53 | s
070A 20 | sp
0708 50 | p -PCU
070C 43 |c
070D 55 |u
070E 20 | sp
070F 46 F ~First
0710 4 |1
0711 52 | R M
0712 53 1s
0713 56 | T
) 0714 20 | SP
0715 52 | R _-Run.
0716 55 JU
| 0717 (4E_| N
0718 2E | -
0719 OA | LF -New line
071A oD | CR
0718 44 | D ~Date: 3/8/1978.,
071C 41 | A
Q71D 54 | T
' 071E, 45 | E
071F 3 |
0720 371 3
0721 2F | /
0722 38 |8
0723 2F | 7
0724 31 {1
0725 39 |9
0726 37 | 7

P

No. |

) "
Labels Address |[Inst|Alé Mnesonics States Comzents 123 .
0727 381 8
0728 2E | -
0729 OA | LF ~New line
0724 op | cr
0728 46 | F ~File #: o
072C 49 I
0/2D 4C | L
072E 4 1 B
072F 20 SP
0730 23 | #
0731 3A | ¢
0732 00 | NUL -End of message mark
MPOINT2 0733 0D | CR =New line .
0734 OA | LF
0735 52 { R ~Repatoire
0736 WO E
0737 50| P
0738 45 | E
0739 541 T
073 4F | o
0738 49 1
073C N 52| R
073D WS [E
073E 20 | sp -Space
073F S0 L P =Program .
0740 52 | R
0741 4F | O
0742 47 | G
0743 52 | R
0744 41 | A
0745 4D | M
0746 20 § SP -Space
0747 4B | K -KBLOK
0748 42| B
0749 4 1 L
074A 4F 1 O
0748 4B | K]
—New line
-Space
—End of message mark
-New line
-New line
~Space
-Data

) — e e o e ——
HEX |D8 : . No. ’
_adels | Address {Inst]Al6 Mnemonics States Comments 124

0759 20 | sp .
075A 54 | T . | -Time j
0758 35 | 1

075C 4 | M

075D %5 | E .

075E 20 | SP

075F 4 { D ~Data

0780 L | A

0761 5 | T '
0762 - 141 A

0763 20 | SP

0764 54 | T ~Time

f 0765 W1 -
0766 1M
0767 v a5 [E
0768 . {20] se o

0769 4 | p . -Data]
076A 41 | A
0768 ST T

076C 41 | A

076D 20 | sp i .

Y 5% | T —Time

076F 49 1 Y

0770 D | X

0771 45 1 E

0772 20 | sp

0773 4 1 D -Data
0774 41 1 A

0775 541 T 1
0776 a1 a N

o777 144

| 0778 54 1T ~Tize ‘

0779 49 {1 -

077A R TR D

Q778 51 E

. 0717C 20 | sp

077D OA { LF —New line

077E oD | CR

077F 00 | NUL : : ~End of message mark

AY

RADYANCED oM MANDS

L) A

e *°f

Ao/
IGAD)’ Al

7R ;’;:

0EBUS CiRCLITRY

rV, K .

14
3.2HMS 3 “ £ 1336 MiE

L4

74

<« 4

co

4

/3
<7

Po

47)

N

/

PMI4Ls
iS¢
Az

7
s00 310 i e -
e 15 i o8¢ -057
L g Py) W
7 1046 =
$xvrasox AT~ (o ; <
(£ P +85Y J— APe - l/"g o
(A36) P Manalg 7 P el
3 . <7
10 R¢ 2 2
/o 7.3 'y ?
”” 7y

T/t oR,

7o w5} st 4y
il Ud ¢ 130
Vyg W <€ R RO Py m5 Xrvay]
Q9 &/55

1 Ziwér Ovr
Rsy Sk < ¢
£ ¢
(S36MNE *

LXNE

FErPEr

il

u

sl

Mope Conyroc

M PAac

(Rane Conreed

Mo

Figure B-5 8085 CPU with scratch-pad memory

Z-

125

—
| *L—j—
5 2
“M—_—&E 243 15 HioAB
i CLK 4 ,404 :7;‘ cL K k3784
5 fo
v A e W L :
A3 # A AL LA 4 /3 5 6|~
Aa 4
4 e J-—J&ﬁt:}h P4 V7 - hrc &2
) 53; J_—‘g « |05 4‘” X
,, CE T £8 </ ae_ <3| Ao A Do 053y 0s Opte by
7 o ij;—'f'“ s ce 7 e Ps pe s
— 4 *.__éf
P/ 71 6 = y‘: u
/8 2e
A8# - A3F— AR —— A Y <
7] one Vi - 7 d
A g A9
N/Sp4¢ g2 A8
A | C—y o bkl /
4 A7 : 201 2 4 Do 0, O B P Pr D0 B
18 45 L 8253
0#-07——% 25 da ootz € crun
. LI 2 :J lﬂ I/‘ 1’6
- .
%‘ ',JI_J
A2 Y7 ———
AP ”lh___a
L1
asAlf gt]
as Gl
a o
[} Voa - — o]
;}l 'y
A A Os 0 O2 B De Oy 05 2y
€les 82554
j & o pesé/
! E r‘ n’ r
|

DC Sweep |

i ‘ PAc %

Figure B-6 1/0 devices with buffered DATA BUS and ADDRESS BUS

/

scadke RPN PN SRS vt g g s

;
‘ +Iv cLeAR
| 2 Lz 1
! {ne 2cc6ae [rremm « P74 Zose
] . 18 227
SU 762393 S rwds 393 1A M ﬁ‘,
~z3 &2V \
L{L’EE“ BT 7 Er e & |¢
2 B & |1 12 L
Hhaoc E2885
D 8 Op Op Oglls 97 GNP Ve
7 "’ T %
= 'Y /4
(“’/”')?F(\ s 2
a7 2
P (.14 \
1 3
e) 410
2
2 3 —
/.53 MHZ ” A7 101892) A27 Y Pa‘,(p
rry b7 192528
I % 2 az6 K-
4 2¢] z r_}
Do O, o By P90 Py Ou O Vee Gup L,& 7]
2 2] pac it
8253 A2z Ciko

o] SATE! ccky OO0 ILTEL

3

g s

(-4

‘II

APPENDIX C

Appendix C contains the PCU-85 system schematic diagram.

127

(1)
(2)

(3)

€]

(5

(6)

i)]
(8)

REFERENCES

Intel, '"MCS-85 User's Manual." January 1978.

Texas Instruments Incorporated, "The TTL Data Book for Design
Engineers," Second Editionm.

Texas Instruments Incorporated, '"Low Power Schottky Bus Drivers
and Transceivers. The LS240 Series Engineering Guide." 1977.

Advanced Micro Devices, Inc., ''The 8080A/9080A MOS Microprocessor

Handbook." 1977.

E. Arijs and D. Nevejans, "Programmable Control Unit for a Balloon

Borne Quadrupole Mass Spectrometer."” Rev. Sci. Instrum., Vol., 46
No. 8, August 1975,

William McFadden, '"Technique of Combined Gas Chromatqgraphy/Mass
Spectrometry: Applications in Organic Analysis." John Wiley and
Sons. 1973; Chapter 2.

1W. Paul, H.P. Reinhard, and Von Sahn, A. Phys. 152, 143. (1958).

P.H. Dawson, N.R. Whetten, Mass Spectroscopy Using RF Quadrupole

Fields; Chap. III, pp 60-185. Advances in Electronics and Electron

Physics, Vol. 27 (1969), Academic Press, N.Y. & London.

128

Y W

;: ~ RELATED CONTRACTS AND PUBLICATIONS

!

; . F19628-74-C-0042 1 September 1973 through 31 July 1976
E F19628-76-C-0256 1 August 1976 through 31 October 1978
’ F19628-78-C-0218 18 September 1978 through present

- W

Sukys, R. and Goldberg, S. (1974),"Control Circuits for a Rocket Payload

Il i da At

Neutralization and Other Topics', AFCRL-TR-74-0580.

Sukys,R., Rockefort, J.S. and Goldberg, S. (1975), "Bias and Signal
Processing Circuits for a Mass Spectrometer in the Project EXCEDE:
SWIR Experiment,” AFGL-TR-76-200.

Rochefort, J. S. and Sukys, R. (1976), "Instrumentation Systems for
Mass Spectrometers", AFGL-TR-76-200.

Rochefort, J. S. and Sukys, R. (1978), "A Digital Control Unit for a Roc-

ket Borne Quadrupole Mass Spectrometer, AFGL-TR-78-0106.
' Palasek, T. (1979), "An RF Oscillator for Rocket-Borne and BAlloon-Borne

Quadrapole Mass Spectrometer, AFGL-TR-

129 n

PERSONNEL

A list of the engineers who contributed to the work reported is B

given below:

J. Spencer Rochefort, Professor of Electrical Engineering,
Department Chairman, Principal Investigator,

Raimundas Sukys, Senior Reasearch Associate, Engineer.

130

Printed by
United States Air Force
Hanscom AFB, Mass. 01731

-t

